chord length

Kenny

New member
Joined
Feb 18, 2012
Messages
11
Hello,

I am a first timer here, please be kind.

How do I figure out the area of a semi-circle were the hieght of the chord length is continuly changing?

Regards,

Ken
 
We're always kind. Why would we be anything else?

You're going to have to find a better translation. That one makes very little sense.
 
We're always kind. Why would we be anything else? Thank you.:p

If you had a semi-circular trough and the water level was constantly changing. You know the depth from the bottom of the trough after the change. How would calculate the chord length in order to find the area? With this I can figure out the volume.

Does that make any sense?

Ken
 
Last edited:
We're always kind. Why would we be anything else? Thank you.:p

If you had a semi-circular trough and the water level was constantly changing. You know the depth from the bottom of the trough after the change. How would calculate the chord length in order to find the area? With this I can figure out the volume.

Does that make any sense?

Ken

1. Draw a sketch (see attachment)

2. Use the right triangle with the hypotenuse r, the leg (r - d) and the leg \(\displaystyle \tfrac12 c\) to determine the length of c.
 

Attachments

  • troghalbrund.jpg
    troghalbrund.jpg
    12 KB · Views: 3
You do not need to know any angles.
From formula #9, the cord length is \(\displaystyle 2\sqrt{4d-d^2}\).
At that website \(\displaystyle R=2~\&~h=d\) in your diagram,

Once again thank you. I am not a young man and that old saying "If you don't use it you lose it" is so true. I tried to search for formula #9 just to see what else may be there, the search was in vain. I am a hobbyist and want to incorporate this formula into some code on an MCU, it' a type of microprocessor. If I follow you all I need is the formula from #9 and this is all I need to calculate the area of liquid?
 
Once again thank you. I am not a young man and that old saying "If you don't use it you lose it" is so true. I tried to search for formula #9 just to see what else may be there, the search was in vain. I am a hobbyist and want to incorporate this formula into some code on an MCU, it' a type of microprocessor. If I follow you all I need is the formula from #9 and this is all I need to calculate the area of liquid?
I have no idea what you mean by "tried to search for formula #9"

On this page there is a subsection entitled "cord length".
There are four formulae for cord length (6),(7),(8),&(9).
There is formula #9.
 
Top