Circle of apollonius equation...Please help asap!

dmp98

New member
Joined
Jun 3, 2015
Messages
1
Two fixed points [FONT=MathJax_Math]A[/FONT] and [FONT=MathJax_Math]B[/FONT] lie in the plane, and the distance between them is [FONT=MathJax_Math]A[FONT=MathJax_Math]B[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math]a[/FONT][/FONT], where [FONT=MathJax_Math]a[FONT=MathJax_Main]>[/FONT][FONT=MathJax_Main]0[/FONT][/FONT].

A point [FONT=MathJax_Math]P[/FONT] moves in the plane so that the ratio of its distances from [FONT=MathJax_Math]A[/FONT] and [FONT=MathJax_Math]B[/FONT] is constant:
[FONT=MathJax_Math]P
[FONT=MathJax_Math]A[/FONT][FONT=MathJax_Math]P[/FONT][FONT=MathJax_Math]B[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Math]λ[/FONT][FONT=MathJax_Main],[/FONT]​
[/FONT]

where [FONT=MathJax_Math]λ[FONT=MathJax_Main]>[/FONT][FONT=MathJax_Main]0[/FONT][/FONT].

  1. Can you sketch the locus of the point [FONT=MathJax_Math]P[/FONT] for different values of [FONT=MathJax_Math]λ[/FONT]?
  2. Using Cartesian coordinates, work out (the equation of) the locus of [FONT=MathJax_Math]P[/FONT].

[h=4]Suggestion[/h]
You may find it more straightforward to first work with specific values of [FONT=MathJax_Math]a[/FONT] and [FONT=MathJax_Math]λ[/FONT], say [FONT=MathJax_Math]a[FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]2[/FONT][/FONT] and [FONT=MathJax_Math]λ[FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]3[/FONT][/FONT].

I really need help with finding the equation. I have set point A(xa,ya), B(ya,yb) and P(x,y)
I think rearranging them and putting them into an expresion and then simplifying will probably give the equation but i just don't know how i would rearrange to get one final equation.

Any help or ideas will be higly appreciated as question due tomorrow :O
 
Two fixed points [FONT=MathJax_Math]A[/FONT] and [FONT=MathJax_Math]B[/FONT] lie in the plane, and the distance between them is [FONT=MathJax_Math]A[FONT=MathJax_Math]B[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math]a[/FONT][/FONT], where [FONT=MathJax_Math]a[FONT=MathJax_Main]>[/FONT][FONT=MathJax_Main]0[/FONT][/FONT].

A point [FONT=MathJax_Math]P[/FONT] moves in the plane so that the ratio of its distances from [FONT=MathJax_Math]A[/FONT] and [FONT=MathJax_Math]B[/FONT] is constant:
[FONT=MathJax_Math]P
[FONT=MathJax_Math]A[/FONT][FONT=MathJax_Math]P[/FONT][FONT=MathJax_Math]B[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Math]λ[/FONT][FONT=MathJax_Main],[/FONT]​
[/FONT]

where [FONT=MathJax_Math]λ[FONT=MathJax_Main]>[/FONT][FONT=MathJax_Main]0[/FONT][/FONT].

  1. Can you sketch the locus of the point [FONT=MathJax_Math]P[/FONT] for different values of [FONT=MathJax_Math]λ[/FONT]?
  2. Using Cartesian coordinates, work out (the equation of) the locus of [FONT=MathJax_Math]P[/FONT].

Suggestion


You may find it more straightforward to first work with specific values of [FONT=MathJax_Math]a[/FONT] and [FONT=MathJax_Math]λ[/FONT], say [FONT=MathJax_Math]a[FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]2[/FONT][/FONT] and [FONT=MathJax_Math]λ[FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]3[/FONT][/FONT].

I really need help with finding the equation. I have set point A(xa,ya), B(ya,yb) and P(x,y)
I think rearranging them and putting them into an expresion and then simplifying will probably give the equation but i just don't know how i would rearrange to get one final equation.

Any help or ideas will be higly appreciated as question due tomorrow :O
As suggested, did you work with specific values of [FONT=MathJax_Math]a[/FONT] and [FONT=MathJax_Math]λ[/FONT], say [FONT=MathJax_Math]a[FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]2[/FONT][/FONT] and [FONT=MathJax_Math]λ[FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]3[/FONT][/FONT]? What did you get?

What are your thoughts?

Please share your work with us ...even if you know it is wrong

If you are stuck at the beginning tell us and we'll start with the definitions.

You need to read the rules of this forum. Please read the post titled "
Read before Posting" at the following URL:

http://www.freemathhelp.com/forum/th...Before-Posting
 
Top