hellawowser
New member
- Joined
- Sep 25, 2017
- Messages
- 23
. . . . .\(\displaystyle \sin\left[\arccos\left(-\dfrac{\sqrt{3\,}}{2}\right)\, +\, \arctan\left(-\dfrac{\sqrt{3\,}}{3}\right)\right]\)
so I know these are easy angles and we all know the values, but what if they weren't and I couldn't use a calculator? My teacher said it can be solved using sin(a+b) = sina cosb + sinb cosa, but I'm stuck.
. . . . .\(\displaystyle \sin\left(a\, +\, b\right)\, =\, \sin\left(\arccos\left(-\dfrac{\sqrt{3\,}}{2}\right)\, +\, \arctan\left(-\dfrac{\sqrt{3\,}}{3}\right)\right)\)
. . . . . . .\(\displaystyle =\, \sin\left(\arccos\left(-\dfrac{\sqrt{3\,}}{2}\right)\right)\, \cos\left(\arctan\left(-\dfrac{\sqrt{3\,}}{3}\right)\right)\, +\, \sin\left(\arctan\left(-\dfrac{\sqrt{3\,}}{3}\right)\right)\, \cos\left(\arccos\left(-\dfrac{\sqrt{3\,}}{2}\right)\right)\)
Then using the inverse functions properties and fundamental formulas I could only calculate sine and cosine of a , that is +/-1/4 and -sqrt3/2 respectively. But i have no idea what to do with sin(arctan) and cos(arctan)
so I know these are easy angles and we all know the values, but what if they weren't and I couldn't use a calculator? My teacher said it can be solved using sin(a+b) = sina cosb + sinb cosa, but I'm stuck.
. . . . .\(\displaystyle \sin\left(a\, +\, b\right)\, =\, \sin\left(\arccos\left(-\dfrac{\sqrt{3\,}}{2}\right)\, +\, \arctan\left(-\dfrac{\sqrt{3\,}}{3}\right)\right)\)
. . . . . . .\(\displaystyle =\, \sin\left(\arccos\left(-\dfrac{\sqrt{3\,}}{2}\right)\right)\, \cos\left(\arctan\left(-\dfrac{\sqrt{3\,}}{3}\right)\right)\, +\, \sin\left(\arctan\left(-\dfrac{\sqrt{3\,}}{3}\right)\right)\, \cos\left(\arccos\left(-\dfrac{\sqrt{3\,}}{2}\right)\right)\)
Then using the inverse functions properties and fundamental formulas I could only calculate sine and cosine of a , that is +/-1/4 and -sqrt3/2 respectively. But i have no idea what to do with sin(arctan) and cos(arctan)
Attachments
Last edited by a moderator: