distance formula

?

Your expression does not look like the distance formula, to me.

Can you post the entire exercise?
 
Guessing

\(\displaystyle d=V_ot+\frac{1}{2}at^2; V_o=0; numbers \;are\;a_i\; a_f\; t_i\; t_f\)
 
This bears SOME resemblance to the "distance formula" taught in geometry classes.

The distance d between points (x[sub:2pdygqu3]1[/sub:2pdygqu3], y[sub:2pdygqu3]1[/sub:2pdygqu3]) and (x[sub:2pdygqu3]2[/sub:2pdygqu3], y[sub:2pdygqu3]2[/sub:2pdygqu3]) is found using this formula:

d = sqrt[ (x[sub:2pdygqu3]2[/sub:2pdygqu3] - x[sub:2pdygqu3]1[/sub:2pdygqu3])[sup:2pdygqu3]2[/sup:2pdygqu3] + (y[sub:2pdygqu3]2[/sub:2pdygqu3] - y[sub:2pdygqu3]1[/sub:2pdygqu3])[sup:2pdygqu3]2[/sup:2pdygqu3] ]

Without seeing the entire problem, it's hard to tell....
 
Helolo, mommy12345!

(1) You must learn the Distance Formula:

. . \(\displaystyle \text{The distance between two points }(x_1,y_1),\:(x_2,y_2)\text{ is given by:}\)

. . . . . . \(\displaystyle d \;=\;\sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}\)


(2) You must type exactly what you mean.




(-1 -4)^2 (-5 -6)= . ??

\(\displaystyle \text{If }that\text{ is the problem, we have: }\:(-5)^2(-11)\:=\:(25)(-11) \:=\:-275\)


I suspect that the problem is something like:

. . \(\displaystyle \text{Find the distance between }P(4,6) \text{ and }(-1,-5)\)


\(\displaystyle \text{Then: }\;d \;=\;\sqrt{(-1-4)^2 + (-5-6)^2} \;=\;\sqrt{(-5)^2+(-11)^2} \;=\;\sqrt{25+121} \;=\;\sqrt{146}\)

 
Top