Find the value of the trigonometric expressions

tanasaur

New member
Joined
Mar 27, 2012
Messages
2
Find the value of the trigonometric expressions?

Find the value of the trigonometric expressions?
tanα = -1/2 sinα>0
cscβ = -6/5 (3π)/2 < β <2π

cos(2α + β)
 
Find the value of the trigonometric expressions?

Find the value of the trigonometric expressions?
tanα = -1/2 sinα>0
cscβ = -6/5 (3π)/2 < β <2π

cos(2α + β)

Do you know the formula for the sum of the cosine of two angles, i.e. Cos (a + b)?

For the trig values given, draw a triangle representing these ratios in the proper quadrant in order to substitute the proper trig values needed into the Cos (a + b) formula.

P.S. You will have to also know the identity for Cos(2x) and Sin (2x) as well :p
 
Last edited:
Hello, tanasaur!

\(\displaystyle \text{Given: }\:\begin{Bmatrix}\tan\alpha = -\frac{1}{2},& \sin\alpha > 0 \\

\csc\beta = -\frac{6}{5},& \frac{3\pi}{2} < \beta < 2\pi \end{Bmatrix}\)

\(\displaystyle \text{Find the value of: }\:\cos(2\alpha + \beta).\)

\(\displaystyle \tan\alpha\text{ is negative in Quadrants 2 and 4.}\)
\(\displaystyle \sin\alpha\text{ is positive in Quadrants 1 and 2.}\)
. . \(\displaystyle \text{Hence: }\,\alpha\text{ is in Quadrant 2.}\)

\(\displaystyle \tan\alpha \:=\:\dfrac{+1}{-2} \:=\:\dfrac{opp}{adj} \)

\(\displaystyle \alpha\text{ is in Quadrant 2 with: }\,opp = 1,\:adj = -2\)

. . \(\displaystyle \text{Hence: }\,hyp = \sqrt{5}\)

\(\displaystyle \sin\alpha \,=\,\dfrac{1}{\sqrt{5}},\;\cos\alpha \,=\,-\dfrac{2}{\sqrt{5}} \;\;[1]\)



\(\displaystyle \text{Since }\,\frac{3\pi}{2} < \beta < 2\pi,\;\beta\text{ is in Quadrant 4.}\)

\(\displaystyle \csc\beta \,=\,\dfrac{+6}{-5} \,=\,\dfrac{hyp}{opp}\)

\(\displaystyle \beta\text{ is in Quadrant 4 with: }\,opp = -5,\;hyp = 6\)

. . \(\displaystyle \text{Hence: }\,adj = \sqrt{11}\)

\(\displaystyle \sin\beta \,=\,-\dfrac{5}{6},\;\cos\beta \,=\,\dfrac{\sqrt{11}}{6}\;\;[2] \)



\(\displaystyle \cos(2\alpha + \beta) \;=\;\cos(2\alpha)\cos(\beta) - \sin(2\alpha)\sin(\beta) \)

. . . . . . . . . .\(\displaystyle =\;(\cos^2\!\alpha - \sin^2\!\alpha)\cos\beta - (2\sin\alpha\cos\alpha)\sin\beta\)

. . . . . . . . . .\(\displaystyle =\;\bigg[\left(\dfrac{-2}{\sqrt{5}}\right)^2 - \left(\dfrac{1}{\sqrt{5}}\right)^2\bigg]\dfrac{\sqrt{11}}{6} - \bigg[2\left(\dfrac{1}{\sqrt{5}}\right)\left(\dfrac{-2}{\sqrt{5}}\right)\bigg]\left(-\dfrac{5}{6}\right) \)

. . . . . . . . . .\(\displaystyle =\;\left(\dfrac{4}{5} - \dfrac{1}{5}\right)\left(\dfrac{\sqrt{11}}{6}\right) - \left(-\dfrac{4}{5}\right)\left(-\dfrac{5}{6}\right) \)

. . . . . . . . . .\(\displaystyle =\;\dfrac{\sqrt{11}}{10} - \dfrac{2}{3}\)

. . . . . . . . . .\(\displaystyle =\;\dfrac{3\sqrt{11} - 20}{30}\)
 
Top