\(\displaystyle \dfrac{2(\tan x - \cot x)}{\tan^2\!x - \cot^2\!x} \;=\;\dfrac{2\left(\dfrac{\sin x}{\cos x} - \dfrac{\cos x}{\sin x}\right)}{\dfrac{\sin^2x}{\cos^2x} - \dfrac{\cos^2\!x}{\sin^2\!x}} \;=\;\frac{\dfrac{2(\sin^2\!x-\cos^2\!x}{\sin x\cos x}}{\dfrac{\sin^4\!x - \cos^4\!x}{\sin^2\!x\cos^2\!x}} \)
\(\displaystyle \text{Flipped the denominator and multiplied: }\:\dfrac{2(\sin^2\!x - \cos^2\!x)}{\sin x\cos x} \cdot \dfrac{\sin^2\!x\cos^2\!x}{\sin^4\!x - \cos^4\!x}\)
. . \(\displaystyle =\;\dfrac{2\sin x\cos x(\sin^2\!x - \cos^2\!x)}{\cos^4\!x-\cos^4\!x} \;=\;\dfrac{\sin2x(\sin^2\!x - \cos^2\!x)}{\sin^4\!x - \cos^4\!x} \)
Aaaand i don't see how that would work. Am I doing something wrong? . No!