cooldudeachyut
New member
- Joined
- Nov 6, 2015
- Messages
- 18
If 0<a,b<π and cos(a) + cos(b) - cos(a+b) = 3/2 then show that a=b=π/3
Question: If 0<a,b<π and cos(a) + cos(b) - cos(a+b) = 3/2 then show that a=b=π/3
My attempt:
2cos((a+b)/2)cos((a-b)/2) - 2cos2((a+b)/2) + 1=3/2
4cos((a+b)/2)cos((a-b)/2) - 4cos2((a+b)/2) =1
4cos((a+b)/2)(cos((a-b)/2) - cos((a+b)/2)) =1
8cos((a+b)/2)(sin(a/2)sin(b/2)) =1
That probably doesn't lead anywhere. So, how to proceed in this question?
Question: If 0<a,b<π and cos(a) + cos(b) - cos(a+b) = 3/2 then show that a=b=π/3
My attempt:
2cos((a+b)/2)cos((a-b)/2) - 2cos2((a+b)/2) + 1=3/2
4cos((a+b)/2)cos((a-b)/2) - 4cos2((a+b)/2) =1
4cos((a+b)/2)(cos((a-b)/2) - cos((a+b)/2)) =1
8cos((a+b)/2)(sin(a/2)sin(b/2)) =1
That probably doesn't lead anywhere. So, how to proceed in this question?