EddyBenzen122
New member
- Joined
- Jul 22, 2021
- Messages
- 28
[math]let\ f(x)\ =\ \frac{8x-5}{-2x+6},\ x\neq3[/math]
The line y = k, where [imath]k\in R[/imath] intersects the graph of [imath]\left|f\left(x\right)\right|[/imath] at exactly one point. Find the possible values of k.
My attempt:
I was thinking discriminant so this is what my work looks like.
[imath]k=\left|\frac{8x-5}{-2x+6}\right|[/imath], [imath]\pm k=\frac{8x-5}{-2x+6}[/imath]
[imath]8x-5=-2kx+6k[/imath], [imath]8x-5=2kx\ -\ 6k[/imath]
[imath]\mathrm{\Delta}_1=\left(2k+8\right)^2-4\left(0\right)\left(-5-6k\right)=4k^2\ \ 32k+64\ =\ 4\left(k^2\ +\ 8k+16\right)[/imath]
[imath]\mathrm{\Delta}_2=\left(-2k+8\right)^2-4\left(0\right)\left(-5+6k\right)=4k^2\ -32k+64\ =\ 4\left(k^2-\ 8k+16\right)[/imath]
[imath]0\ =\ 4\left(k^2\ +\ 8k+16\right)\ =4\ \left(k+4\right)^2[/imath]
[imath]0\ =\ 4\left(k^2\ -\ 8k+16\right)\ =\ \left(k\ -\ 4\right)^2[/imath]
[imath]k=\pm4[/imath]
The answer key says k = 0 and k = 4, so I have no idea what I've done wrong.
The line y = k, where [imath]k\in R[/imath] intersects the graph of [imath]\left|f\left(x\right)\right|[/imath] at exactly one point. Find the possible values of k.
My attempt:
I was thinking discriminant so this is what my work looks like.
[imath]k=\left|\frac{8x-5}{-2x+6}\right|[/imath], [imath]\pm k=\frac{8x-5}{-2x+6}[/imath]
[imath]8x-5=-2kx+6k[/imath], [imath]8x-5=2kx\ -\ 6k[/imath]
[imath]\mathrm{\Delta}_1=\left(2k+8\right)^2-4\left(0\right)\left(-5-6k\right)=4k^2\ \ 32k+64\ =\ 4\left(k^2\ +\ 8k+16\right)[/imath]
[imath]\mathrm{\Delta}_2=\left(-2k+8\right)^2-4\left(0\right)\left(-5+6k\right)=4k^2\ -32k+64\ =\ 4\left(k^2-\ 8k+16\right)[/imath]
[imath]0\ =\ 4\left(k^2\ +\ 8k+16\right)\ =4\ \left(k+4\right)^2[/imath]
[imath]0\ =\ 4\left(k^2\ -\ 8k+16\right)\ =\ \left(k\ -\ 4\right)^2[/imath]
[imath]k=\pm4[/imath]
The answer key says k = 0 and k = 4, so I have no idea what I've done wrong.