Hello,
I solved x8 + x6 + x2 + 1 = 0
I found +- i , + - root [(1 + i root(3))/2] , + - root [(1 - i root(3))/2]
I would like to put now these solutions under polar form (I know how to make it in the standard cases)
If we take the solution + root [(1 + i root(3))/2] , I have a problem with the great root and I'm not able to find the polar form.
How to find the remarkable value of the angle please ?
Thanks
First thing I would do is note that if we write \(\displaystyle \displaystyle \begin{align*} X = x^2 \end{align*}\) then the equation is
\(\displaystyle \displaystyle \begin{align*} x^8 + x^6 + x^2 + 1 &= 0 \\ X^4 + X^3 + X + 1 &= 0 \\ X^3 \, \left( X + 1 \right) + 1 \, \left( X + 1 \right) &= 0 \\ \left( X + 1 \right) \left( X^3 + 1 \right) &= 0 \\ \left( X + 1 \right) ^2 \, \left( X^2 - X + 1 \right) &= 0 \\ X + 1 = 0 \textrm{ or } X^2 - X + 1 &= 0 \\ X = -1 \textrm{ or } X &= \frac{1 \pm \sqrt{ \left( -1 \right) ^2 - 4 \cdot 1 \cdot 1 }}{2 \cdot 1} \\ X = -1 \textrm{ or } X &= \frac{1 \pm \sqrt{ -3 }}{2} \\ X = -1 \textrm{ or } X &= \frac{1 \pm \mathrm{i}\,\sqrt{3}}{2} \end{align*}\)
So case 1:
\(\displaystyle \displaystyle \begin{align*} X &= -1 \\ x^2 &= -1 \\ x &= \pm \, \mathrm{i} \end{align*}\)
Case 2:
\(\displaystyle \displaystyle \begin{align*} X &= \frac{1 - \mathrm{i}\,\sqrt{3}}{2} \\ X &= \frac{1}{2} - \mathrm{i}\,\frac{\sqrt{3}}{2} \end{align*}\)
X is obviously in the fourth quadrant. Its magnitude is \(\displaystyle \displaystyle \begin{align*} \sqrt{ \left( \frac{1}{2} \right) ^2 + \left( -\frac{\sqrt{3}}{2} \right) ^2 } = \sqrt{ \frac{1}{4} + \frac{3}{4} } = \sqrt{ 1 } = 1 \end{align*}\) and its angle is \(\displaystyle \displaystyle \begin{align*} -\arctan{ \left( \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} \right) } = -\arctan{ \left( \sqrt{3} \right) } = -\frac{\pi}{3} \end{align*}\)
also any added or subtracted integer multiple of \(\displaystyle \displaystyle \begin{align*} 2\,\pi \end{align*}\) will work. So that means
\(\displaystyle \displaystyle \begin{align*} X &= \frac{1}{2} - \mathrm{i}\,\frac{\sqrt{3}}{2} \\ X &= \mathrm{e}^{ \mathrm{i}\,\left( 2\,\pi\, n - \frac{\pi}{3} \right) } \textrm{ where } n \in \mathbf{Z} \\ x^2 &= \mathrm{e}^{ \mathrm{i}\,\left( 2\,\pi\,n - \frac{\pi}{3} \right) } \\ x &= \left[ \mathrm{e}^{ \mathrm{i}\,\left( 2\,\pi\,n - \frac{\pi}{3} \right) } \right] ^{\frac{1}{2}} \\ x &= \mathrm{e}^{ \mathrm{i}\,\left( \pi\,n - \frac{\pi}{6} \right) } \end{align*}\)
The two principal solutions are
\(\displaystyle \displaystyle \begin{align*} x &= \mathrm{e}^{ \mathrm{i}\,\left( -\frac{\pi}{6} \right) } \\ &= \cos{ \left( -\frac{\pi}{6} \right) } + \mathrm{i}\sin{ \left( -\frac{\pi}{6} \right) } \\ &= \frac{\sqrt{3}}{2} - \frac{1}{2}\,\mathrm{i} \end{align*}\)
and
\(\displaystyle \displaystyle \begin{align*} x &= \mathrm{e}^{ \mathrm{i}\,\left( \frac{5\,\pi}{6} \right) } \\ &= \cos{ \left( \frac{5\,\pi}{6} \right) } + \mathrm{i}\sin{ \left( \frac{5\, \pi}{6} \right) } \\ &= -\frac{\sqrt{3}}{2} + \frac{1}{2}\,\mathrm{i} \end{align*}\)
Can you try and find the solutions for Case 3, where \(\displaystyle \displaystyle \begin{align*} X = x^2 = \frac{1}{2} + \mathrm{i}\,\frac{\sqrt{3}}{2} \end{align*}\)?