Rational Expression: 1+6w/w^2-6w+9=18/w^2-6w+9

nickilin

New member
Joined
Oct 28, 2007
Messages
13
Here's the problem:

1 + 6w / w^2 - 6w + 9 = 18 / w^2 - 6w + 9

This is what I have and am totally lost...any help is greatly appreciated.

1+6w=18
6w=18-1
6w=17
---------- =w=17/6. :?:
6 6
 
Re: Rational Expression

\(\displaystyle \frac{1 + 6w}{w^{2} - 6w + 9} = \frac{18}{w^{2} - 6w + 9}\)

Looks good to me :wink:
 
Re: Rational Expression

Yep. Plug it back in to see if both sides are equal!

Left hand side:
\(\displaystyle \frac{1 + 6w}{w^{2} - 6w + 9}\)

\(\displaystyle = \frac{1 + 6\left(\frac{17}{6}\right)}{\left(\frac{17}{6}\right)^{2} - 6\left(\frac{17}{6}\right) + 9}\)

\(\displaystyle = \frac{18}{\frac{289}{36} - 17 \cdot \frac{36}{36} + 9 \cdot \frac{36}{36}}\)

\(\displaystyle = \frac{18}{\frac{289}{36} - \frac{612}{36} + \frac{324}{36}}\)

\(\displaystyle = \frac{18}{\frac{1}{36}}\)

\(\displaystyle = 648\)

Right hand side:
\(\displaystyle \frac{18}{w^{2} - 6w + 9}\)

\(\displaystyle = \frac{18}{\left(\frac{17}{6}\right)^{2} - 6\left(\frac{17}{6}\right) + 9}\)

Denominator is the same as the left hand side ... so ...

\(\displaystyle = \frac{18}{\frac{1}{36}}\)

\(\displaystyle = 648\)

Enough proof for ya? :wink:
 
Top