So, I have this problem:
. . . . .\(\displaystyle \sin(x)\, \left(\tan(x)\right)\, +\, \dfrac{\sin(x)}{\tan(x)}\, =\, \dfrac{1}{\cos(x)}\)
and I can get to here no problem:
. . . . .\(\displaystyle \sin(x)\, \left(\tan(x)\right)\, +\, \dfrac{\sin(x)}{\tan(x)}\, =\, \dfrac{1}{\cos(x)}\)
. . . . .\(\displaystyle \mbox{Use LS}\)
. . . . .\(\displaystyle =\, \sin(x)\, \left(\dfrac{\sin(x)}{\cos(x)}\right)\, +\, \dfrac{\sin(x)}{\tan(x)}\)
. . . . .\(\displaystyle =\,\cos(x)\,+\,\dfrac{\sin(x)}{\left(\dfrac{\sin(x)}{\cos(x)}\right)}\)
. . . . .\(\displaystyle =\, \cos(x)\, +\, \left(\, \dfrac{\sin(x)}{1}\, \cdot\, \dfrac{\cos(x)}{\sin(x)}\, \right)\)
. . . . .\(\displaystyle =\, 2\cos(x)\)
But I don't know what to do from here. Any help is appreciated!
. . . . .\(\displaystyle \sin(x)\, \left(\tan(x)\right)\, +\, \dfrac{\sin(x)}{\tan(x)}\, =\, \dfrac{1}{\cos(x)}\)
and I can get to here no problem:
. . . . .\(\displaystyle \sin(x)\, \left(\tan(x)\right)\, +\, \dfrac{\sin(x)}{\tan(x)}\, =\, \dfrac{1}{\cos(x)}\)
. . . . .\(\displaystyle \mbox{Use LS}\)
. . . . .\(\displaystyle =\, \sin(x)\, \left(\dfrac{\sin(x)}{\cos(x)}\right)\, +\, \dfrac{\sin(x)}{\tan(x)}\)
. . . . .\(\displaystyle =\,\cos(x)\,+\,\dfrac{\sin(x)}{\left(\dfrac{\sin(x)}{\cos(x)}\right)}\)
. . . . .\(\displaystyle =\, \cos(x)\, +\, \left(\, \dfrac{\sin(x)}{1}\, \cdot\, \dfrac{\cos(x)}{\sin(x)}\, \right)\)
. . . . .\(\displaystyle =\, 2\cos(x)\)
But I don't know what to do from here. Any help is appreciated!
Last edited by a moderator: