The 3-parameter transformation found from the measurements are: ΔX = 337.285 ΔY = -21

chessguru

New member
Joined
Apr 18, 2016
Messages
1
The 3-parameter transformation found from the measurements are: ΔX = 337.285 ΔY = -21

The text says as follows:

[QUOTE Given the Coordinate:
[FONT=Arial,Arial][FONT=Arial,Arial]NGO48 – Axis III: X = 215728.076 Y = 180.820 h = 75 (geoid height = 0 => geoid = ellipsoid)
This correspond to (in geodetic)
Fi = 59 56 12.52509 N LA = 10 43 34.14489 E H = 75 m
The 3-parameter transformation found from the measurements are:
[/FONT]
[/FONT][FONT=Arial,Arial][FONT=Arial,Arial]ΔX = [/FONT][/FONT][FONT=Arial,Arial][FONT=Arial,Arial]337.285 [/FONT][/FONT][FONT=Arial,Arial][FONT=Arial,Arial]ΔY = [/FONT][/FONT][FONT=Arial,Arial][FONT=Arial,Arial]-210.809 [/FONT][/FONT][FONT=Arial,Arial][FONT=Arial,Arial]ΔZ = [/FONT][/FONT][FONT=Arial,Arial][FONT=Arial,Arial]564.181 [/FONT][/FONT][FONT=Arial,Arial][FONT=Arial,Arial](from NGO to E89) [/FONT][/FONT]
[FONT=Arial,Arial][FONT=Arial,Arial][/FONT][/FONT][FONT=Times New Roman,Times New Roman][FONT=Times New Roman,Times New Roman]Convert the transformed coordinate back to geodetic on the E89/ETRS ellipsoid, and to UTM cords. in zone 32 (use an available software tool for the last part).
How does it fit with the measured EU89 UTM32 value which is:
N = 6645712.000 E=596185.000 – orto H = 75 m.
[/FONT]
[/FONT][FONT=Arial,Arial][FONT=Arial,Arial]Data for the NGO48 ellipsoid:
Major axis – a = 6 377 492.0176 Flattening (f) = 1/299.15281285
Data for the EE89 ellipsoid:
Major axis – a = 6 378 137.00 Flattening (f) = 1/298.257222101
[/FONT]
[/FONT]][/QUOTE]

So first of all I have made the geodetic coordinate to an number that can be used in Equations:
Fi: 59,936812525 and LA 10,7261513258333

So according to the book the Equation for transforming geodetic to geocentric will be:

X = (R+h) cos Fi cos LA
Y= (R+h) cos Fi sin LA
Z= (R+h) sin Fi

So fro this I get:
X= (6377492.0176+ 75) cos59.936812525 cos10.72615135833333

X=3139051,6728233373337891251106001
Y= (6377492.0176 + 75) cos59.936812525 sin10.72615135833333
Y=594614,00129819501048156644348729
Now the Y isnt too far off, but the X is way off. Should produce a coordinate close to the measured value N = 6645712.000
The problem is that cos59.936812525 will be apx 0,5 which will divide my result in two . Am I using the formula right? What am I missing?
 

Attachments

  • part1_eu89.JPG
    part1_eu89.JPG
    289.7 KB · Views: 0
Top