Trig Proof. Killing me!

fran33s

New member
Joined
Nov 21, 2011
Messages
1
I have been trying this for hours! I just can't get it!!!!

sin x + sin 3x + sin 5x + sin 7x = 4cosccos2xsin4x

can anyone please help me?
 
Hello, fran33s!

We need two sum-to-product identities:

. . \(\displaystyle \begin{array}{ccc}\sin A + \sin B &=& 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) \\ \\ \cos A + \cos B &=& 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)\end{array}\)


\(\displaystyle \sin x + \sin 3x + \sin 5x + \sin 7x \:=\: 4\cos x\cos2x\sin4x\)

The left side is: .\(\displaystyle \underbrace{(\sin7x + \sin x)} + \underbrace{(\sin5x+\sin3x)}\)

. . . . . . . . . . \(\displaystyle =\;\;\overbrace{2\sin4x\cos3x} \;+\; \overbrace{2\sin4x\cos x}\)

. . . . . . . . . . \(\displaystyle =\;\;2\sin4x\underbrace{(\cos3x + \cos x)}\)

. . . . . . . . . . \(\displaystyle =\;\;2\sin4x\cdot \overbrace{2\cos2x\cos x}\)

. . . . . . . . . . \(\displaystyle =\;\;2\cos x\cos2x\sin4x\)
 
Hello, allh5!

Don't tack your problem on the end of someone else's post.
You're lucky that I read this post again . . .

By the way, that Greek letter is pi.


\(\displaystyle \text{Solve: }\:\sin 4x\:=\:2\cos2x,\;\;[0,\,2\pi)\)

Double-angle identity: .\(\displaystyle \sin2\theta \:=\:2\sin\theta\cos\theta\)

So we have:[COLOR=#e00e] .[/COLOR]\(\displaystyle \sin3x \:=\:2\cos2x\)

... \(\displaystyle 2\sin2x\cos2x \:=\:2\cos2x\)

. . \(\displaystyle 2\sin2x\cos2x - 2\cos2x \:=\:0\)

. . \(\displaystyle 2\cos2x(\sin2x - 1) \:=\:0\)


Then: .\(\displaystyle \cos2x \:=\:0 \quad\Rightarrow\quad 2x \:=\:\frac{\pi}{2} + \pi n \quad\Rightarrow\quad x \:=\:\frac{\pi}{4} + \frac{\pi}{2}n \)

. . \(\displaystyle \sin2x-1\:=\:0 \quad\Rightarrow\quad \sin2x \:=\:1 \quad\Rightarrow\quad 2x \:=\:\frac{\pi}{2} + 2\pi n\) . \(\displaystyle \Rightarrow\quad x \:=\:\frac{\pi}{4} + \pi n \)


Therefore: .\(\displaystyle \boxed{x \;=\;\frac{\pi}{4},\:\frac{3\pi}{4},\:\frac{5\pi}{4},\:\frac{7\pi}{4}}\)
 
Top