Note that: .\(\displaystyle \sin x,\cos x\,>\,0\:\text{ and }\:\sin x, \cos x \,\ne\,1\)\(\displaystyle \text{Solve for }x:\;\;\log_{\sin x}(2) + \log_{\cos x}(2) + \log_{\sin x}(2)\!\cdot\!\log_{\cos x}(2) \:=\:0 \)
Note that: .\(\displaystyle \sin x,\cos x\:>\:0\,\text{ and }\,\sin x,\cos x \:\ne\:1\)\(\displaystyle b)\;\log_{\cos x}(\sin x) + \log_{\sin x}(\cos x) \:=\:2\)
\(\displaystyle c)\;\log_{\sin x\cos x}(\sin x) + \log_{\sin x\cos x}(\cos x) \:=\:\frac{1}{4}\)
\(\displaystyle c)\;\log_{\sin x\cos x}(\sin x) \cdot \log_{\sin x\cos x}(\cos x) \;=\;\frac{1}{4}\)