Trigonometric Sum: cos(2pi/28)*csc(3pi/28) + cos(6pi/28)*csc(9pi/28) + cos(18pi/28)*

lampat

New member
Joined
Dec 14, 2011
Messages
16
The value of \(\displaystyle \displaystyle \cos \left(\frac{2\pi}{28}\right)\cdot \csc \left(\frac{3\pi}{28}\right)+\cos \left(\frac{6\pi}{28}\right)\cdot \csc \left(\frac{9\pi}{28}\right)+\cos \left(\frac{18\pi}{28}\right)\cdot \csc \left(\frac{27\pi}{28}\right)\)
 
The value of \(\displaystyle \displaystyle \cos \left(\frac{2\pi}{28}\right)\cdot \csc \left(\frac{3\pi}{28}\right)+\cos \left(\frac{6\pi}{28}\right)\cdot \csc \left(\frac{9\pi}{28}\right)+\cos \left(\frac{18\pi}{28}\right)\cdot \csc \left(\frac{27\pi}{28}\right)\)
What are your thoughts? What have you done so far? Please show us your work even if you feel that it is wrong so we may try to help you. You might also read
http://www.freemathhelp.com/forum/threads/78006-Read-Before-Posting
 
Top