I'm watching the video 100 Integrals of blackpenredpen. I'm on number 28 at time 1:35:00.
[imath]\displaystyle \int \sqrt{x^2 + 4x + 13} \ dx = \int \sqrt{(x + 2)^2 + 3^2} \ dx[/imath]
What is the strategy to go from [imath]x^2 + 4x + 13[/imath] to [imath](x + 2)^2 + 3^2[/imath]?
[imath]\displaystyle \int \sqrt{x^2 + 4x + 13} \ dx = \int \sqrt{(x + 2)^2 + 3^2} \ dx[/imath]
What is the strategy to go from [imath]x^2 + 4x + 13[/imath] to [imath](x + 2)^2 + 3^2[/imath]?