mathwannabe
Junior Member
- Joined
- Feb 20, 2012
- Messages
- 122
Hello everyone 
Here is another one:
1) \(\displaystyle \dfrac{(a^2+b^2+c^2)^2-(a^2-b^2+c^2)^2}{4ab^2-4abc}=\)
\(\displaystyle =\dfrac{(a^2+b^2+c^2-a^2+b^2-c^2)(a^2+b^2+c^2+a^2-b^2+c^2)}{4ab^2-4abc}=\)
\(\displaystyle =\dfrac{2b^2(2a^2+2c^2)}{4ab(b-c)}=\)
\(\displaystyle =\dfrac{4b^2(a^2+c^2)}{4ab(b-c)}=\)
\(\displaystyle =\dfrac{b(a^2+c^2)}{a(b-c)}=\)
\(\displaystyle =\dfrac{a^2b+bc^2}{ab-bc}\)
The book says that the answer is \(\displaystyle \dfrac{a(b+c)}{b}\). How? What am I doing wrong?
Here is another one:
1) \(\displaystyle \dfrac{(a^2+b^2+c^2)^2-(a^2-b^2+c^2)^2}{4ab^2-4abc}=\)
\(\displaystyle =\dfrac{(a^2+b^2+c^2-a^2+b^2-c^2)(a^2+b^2+c^2+a^2-b^2+c^2)}{4ab^2-4abc}=\)
\(\displaystyle =\dfrac{2b^2(2a^2+2c^2)}{4ab(b-c)}=\)
\(\displaystyle =\dfrac{4b^2(a^2+c^2)}{4ab(b-c)}=\)
\(\displaystyle =\dfrac{b(a^2+c^2)}{a(b-c)}=\)
\(\displaystyle =\dfrac{a^2b+bc^2}{ab-bc}\)
The book says that the answer is \(\displaystyle \dfrac{a(b+c)}{b}\). How? What am I doing wrong?