\(\displaystyle A = \frac{B\sin k(b - x)}{\sin k(x - a)}\)
Substitute this result in the second equation.
\(\displaystyle -kB\cos k(b - x) - k\left(\frac{B\sin k(b - x)}{\sin k(x - a)}\right)\cos k(x - a) = 1\)
Solve for \(\displaystyle B\).
\(\displaystyle -kB\cos k(b - x)\sin k(x - a) - kB\sin k(b - x)\cos k(x - a) = \sin k(x - a)\)
\(\displaystyle B\bigg[k\cos k(b - x)\sin k(x - a) + k\sin k(b - x)\cos k(x - a)\bigg] = -\sin k(x - a)\)
\(\displaystyle B = -\frac{\sin k(x - a)}{k\cos k(b - x)\sin k(x - a) + k\sin k(b - x)\cos k(x - a)}\)
We will use this identity.
\(\displaystyle \sin A \cos B + \sin B \cos A = \sin(A + B)\)
Then,
\(\displaystyle B = -\frac{\sin k(x - a)}{k\sin k(b - a)}\)
And
\(\displaystyle A = \bigg[-\frac{\sin k(x - a)}{k\sin k(b - a)}\bigg]\frac{\sin k(b - x)}{\sin k(x - a)}\)
Or
\(\displaystyle A = -\frac{\sin k(b - x)}{k\sin k(b - a)}\)