exact - 2

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
2,214
\(\displaystyle \textcolor{indigo}{\bold{Solve.}}\)

\(\displaystyle \left(e^{2y} - y \cos xy\right) \ dx + \left(2xe^{2y} - x\cos xy + 2y\right) \ dy = 0\)
 
Let

\(\displaystyle M(x,y) = e^{2y} - y\cos xy\)
\(\displaystyle N(x,y) = 2xe^{2y} - x\cos xy + 2y\)


\(\displaystyle \frac{\partial M}{\partial y} = 2e^{2y} - \cos xy + xy \sin xy\)


\(\displaystyle \frac{\partial N}{\partial x} = 2e^{2y} - \cos xy + xy\sin xy\)


Since \(\displaystyle \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}\), there is a function \(\displaystyle f(x,y) = c\) such that:

\(\displaystyle \frac{\partial f}{\partial x} = e^{2y} - y\cos xy\)

and

\(\displaystyle \frac{\partial f}{\partial y} = 2xe^{2y} - x\cos xy + 2y\)


\(\displaystyle f(x,y) = \int (e^{2y} - y\cos xy) \ dx = xe^{2y} - \sin xy + g(y)\)


\(\displaystyle \frac{\partial f}{\partial y} = 2xe^{2y} - x\cos xy + g'(y)\)


\(\displaystyle 2xe^{2y} - x\cos xy + 2y = 2xe^{2y} - x\cos xy + g'(y)\)

This gives:

\(\displaystyle g'(y) = 2y\)

\(\displaystyle g(y) = y^2\)

\(\displaystyle f(x,y) = \int (e^{2y} - y\cos xy) \ dx = xe^{2y} - \sin xy + y^2\)

The \(\displaystyle \textcolor{indigo}{\bold{solution}}\) to the differential equation is:

\(\displaystyle \textcolor{blue}{xe^{2y(x)} - \sin xy(x) + y^2(x) = c}\)
 
Last edited:
Top