Given |AB| cong to |CD|, |AD| cong to |BC|, prove |AB| par to |CD|, |AD| par to |BC

Tmdan4357

New member
Joined
Jun 26, 2016
Messages
3
Hello I need some help on this problem
attachment.php
 

Attachments

  • image.jpg
    image.jpg
    515.5 KB · Views: 1
  • image.jpg
    image.jpg
    505.4 KB · Views: 15
Hello I need some help on this problem

Code:
diagram:
      A*-----------*B
      /1\4        /
     /   \       /
    /     \     /
   /       \   /
  /        2\3/
D*-----------*C

\(\displaystyle \mbox{Given: }\, \overline{AB}\, \cong\, \overline{CD};\, \overline{AD}\, \cong\, \overline{BC}\)

\(\displaystyle \mbox{Prove: }\, \overline{AB}\, \|\, \overline{CD};\, \overline{AD}\, \|\, \overline{BC}\)
Hint: If one extends AB, DC, and AC, what can one say about angles 4 and 2? What about extending AD, BC, and AC, with respect to angles 1 and 3? What then about triangles ADC and ABC? ;)
 
Top