Any mistakes so far?
\(\displaystyle y = 2\cot(x)\)
Given formula: \(\displaystyle y = A\cot(Bx - C) + D\)
1. Identify the Letters:
\(\displaystyle A = 2, B = 1, C = 0, D = 0\)
2. Find the x intercept
Set \(\displaystyle y = 0\), solve for \(\displaystyle x\) by eventually using an inverted \(\displaystyle \arctan\) because \(\displaystyle \cot = \dfrac{1}{\tan}\)
\(\displaystyle 0 = 2\cot(x)\)
\(\displaystyle 0 = 2\dfrac{1}{\tan(x)}\)
\(\displaystyle 0 = \dfrac{1}{\tan(x)}\)
\(\displaystyle \arctan(0) = \arctan(\dfrac{1}{\tan(x)}\)
\(\displaystyle 0 = \dfrac{1}{x}\)
3. Locate Vertical Asymptotes
a)
\(\displaystyle 0 = 2\cot(x)\)
\(\displaystyle 0 = 2\dfrac{1}{\tan(x)}\)
\(\displaystyle 0 = \dfrac{1}{\tan(x)}\)
\(\displaystyle \arctan(0) = \arctan(\dfrac{1}{\tan(x)})\)
\(\displaystyle 0 = \dfrac{1}{x}\)
b)
\(\displaystyle \pi = 2\cot x\)
\(\displaystyle \pi = 2\dfrac{1}{\tan(x)}\)
\(\displaystyle \dfrac{\pi}{2} = \dfrac{1}{\tan(x)}\)
\(\displaystyle \arctan(\dfrac{\pi}{2}) = \arctan(\dfrac{1}{\tan(x)})\)
\(\displaystyle 88.7 = \dfrac{1}{x}\)
\(\displaystyle y = 2\cot(x)\)
Given formula: \(\displaystyle y = A\cot(Bx - C) + D\)
1. Identify the Letters:
\(\displaystyle A = 2, B = 1, C = 0, D = 0\)
2. Find the x intercept
Set \(\displaystyle y = 0\), solve for \(\displaystyle x\) by eventually using an inverted \(\displaystyle \arctan\) because \(\displaystyle \cot = \dfrac{1}{\tan}\)
\(\displaystyle 0 = 2\cot(x)\)
\(\displaystyle 0 = 2\dfrac{1}{\tan(x)}\)
\(\displaystyle 0 = \dfrac{1}{\tan(x)}\)
\(\displaystyle \arctan(0) = \arctan(\dfrac{1}{\tan(x)}\)
\(\displaystyle 0 = \dfrac{1}{x}\)
3. Locate Vertical Asymptotes
a)
\(\displaystyle 0 = 2\cot(x)\)
\(\displaystyle 0 = 2\dfrac{1}{\tan(x)}\)
\(\displaystyle 0 = \dfrac{1}{\tan(x)}\)
\(\displaystyle \arctan(0) = \arctan(\dfrac{1}{\tan(x)})\)
\(\displaystyle 0 = \dfrac{1}{x}\)
b)
\(\displaystyle \pi = 2\cot x\)
\(\displaystyle \pi = 2\dfrac{1}{\tan(x)}\)
\(\displaystyle \dfrac{\pi}{2} = \dfrac{1}{\tan(x)}\)
\(\displaystyle \arctan(\dfrac{\pi}{2}) = \arctan(\dfrac{1}{\tan(x)})\)
\(\displaystyle 88.7 = \dfrac{1}{x}\)
Last edited: