Find the Fourier transform of the half-cosine pulse shown.
logistic_guy Senior Member Joined Apr 17, 2024 Messages 2,214 Jul 12, 2025 #1 Find the Fourier transform of the half-cosine pulse shown.
logistic_guy Senior Member Joined Apr 17, 2024 Messages 2,214 Jul 12, 2025 #2 This graph can be described by: \(\displaystyle g(t) = \cos \frac{\pi t}{T} \ \text{rect}\frac{t}{T}\) where \(\displaystyle \text{rect}\frac{t}{T}\) is the rectangular function.
This graph can be described by: \(\displaystyle g(t) = \cos \frac{\pi t}{T} \ \text{rect}\frac{t}{T}\) where \(\displaystyle \text{rect}\frac{t}{T}\) is the rectangular function.
logistic_guy Senior Member Joined Apr 17, 2024 Messages 2,214 Jul 13, 2025 #3 Let \(\displaystyle g_1(t) = A\cos \frac{\pi t}{T}\) and \(\displaystyle g_2(t) = \text{rect}\frac{t}{T}\) \(\displaystyle G_1(f) = \mathcal{F}\{g_1(t)\} = \mathcal{F}\left\{A\cos \frac{\pi t}{T}\right\} = \frac{A}{2}\left[\delta\left(f - \frac{1}{2T}\right) + \delta\left(f + \frac{1}{2T}\right)\right]\)
Let \(\displaystyle g_1(t) = A\cos \frac{\pi t}{T}\) and \(\displaystyle g_2(t) = \text{rect}\frac{t}{T}\) \(\displaystyle G_1(f) = \mathcal{F}\{g_1(t)\} = \mathcal{F}\left\{A\cos \frac{\pi t}{T}\right\} = \frac{A}{2}\left[\delta\left(f - \frac{1}{2T}\right) + \delta\left(f + \frac{1}{2T}\right)\right]\)
logistic_guy Senior Member Joined Apr 17, 2024 Messages 2,214 Jul 14, 2025 #4 logistic_guy said: \(\displaystyle g_2(t) = \text{rect}\frac{t}{T}\) Click to expand... \(\displaystyle G_2(f) = \mathcal{F}\{g_2(t)\} = \mathcal{F}\left\{\text{rect}\frac{t}{T}\right\} = T\text{sinc} fT\) \(\displaystyle \textcolor{red}{\text{Definition.}}\) \(\displaystyle \text{sinc} \lambda = \frac{\sin \pi \lambda}{\pi \lambda}\) Then, \(\displaystyle G_2(f) = T\text{sinc} fT = T\frac{\sin \pi fT}{\pi fT}\)
logistic_guy said: \(\displaystyle g_2(t) = \text{rect}\frac{t}{T}\) Click to expand... \(\displaystyle G_2(f) = \mathcal{F}\{g_2(t)\} = \mathcal{F}\left\{\text{rect}\frac{t}{T}\right\} = T\text{sinc} fT\) \(\displaystyle \textcolor{red}{\text{Definition.}}\) \(\displaystyle \text{sinc} \lambda = \frac{\sin \pi \lambda}{\pi \lambda}\) Then, \(\displaystyle G_2(f) = T\text{sinc} fT = T\frac{\sin \pi fT}{\pi fT}\)
logistic_guy Senior Member Joined Apr 17, 2024 Messages 2,214 Jul 15, 2025 #5 Now we are ready to do the convolution which will give us the Fourier transform of \(\displaystyle g(t)\). \(\displaystyle \mathcal{F}\{g(t)\} = G(f) = G_1(f)*G_2(f) = \frac{AT}{2}\int_{-\infty}^{\infty} \frac{\sin \pi \mu T}{\pi \mu T} \left[\delta\left(\mu - \left[f - \frac{1}{2T}\right]\right) + \delta\left(\mu - \left[f + \frac{1}{2T}\right]\right)\right] \ d\mu\) Properties of \(\displaystyle \delta\) function gives: \(\displaystyle G(f) = \frac{AT}{2}\left(\frac{\sin \pi \left[f - \frac{1}{2T}\right] T}{\pi \left[f - \frac{1}{2T}\right] T} + \frac{\sin \pi \left[f + \frac{1}{2T}\right] T}{\pi \left[f + \frac{1}{2T}\right] T}\right)\) With a little simplification, we get: \(\displaystyle G(f) = \frac{A}{2\pi}\left(\frac{\cos \pi fT}{f + \frac{1}{2T}} - \frac{\cos \pi fT}{f - \frac{1}{2T}}\right)\)
Now we are ready to do the convolution which will give us the Fourier transform of \(\displaystyle g(t)\). \(\displaystyle \mathcal{F}\{g(t)\} = G(f) = G_1(f)*G_2(f) = \frac{AT}{2}\int_{-\infty}^{\infty} \frac{\sin \pi \mu T}{\pi \mu T} \left[\delta\left(\mu - \left[f - \frac{1}{2T}\right]\right) + \delta\left(\mu - \left[f + \frac{1}{2T}\right]\right)\right] \ d\mu\) Properties of \(\displaystyle \delta\) function gives: \(\displaystyle G(f) = \frac{AT}{2}\left(\frac{\sin \pi \left[f - \frac{1}{2T}\right] T}{\pi \left[f - \frac{1}{2T}\right] T} + \frac{\sin \pi \left[f + \frac{1}{2T}\right] T}{\pi \left[f + \frac{1}{2T}\right] T}\right)\) With a little simplification, we get: \(\displaystyle G(f) = \frac{A}{2\pi}\left(\frac{\cos \pi fT}{f + \frac{1}{2T}} - \frac{\cos \pi fT}{f - \frac{1}{2T}}\right)\)