Hello, ryan882!
Use these two identities:
. . \(\displaystyle \sin^2\!\frac{x}{2} \:=\:\dfrac{1-\cos x}{2} \quad\Rightarrow\quad 1 - \cos x \:=\:2\sin^2\!\frac{x}{2}\)
. . \(\displaystyle \cos^2\!\frac{x}{2} \:=\: \dfrac{1 + \cos x}{2} \quad\Rightarrow\quad 1 + \cos x \:=\:2\cos^2\!\frac{x}{2}\)
\(\displaystyle \text{Then: }\:\dfrac{1-\cos x}{1+\cos x} \:=\:\dfrac{2\sin^2\!\frac{x}{2}}{2\cos^2\!\frac{x}{2}} \:=\:\dfrac{\sin^2\!\frac{x}{2}}{\cos^2\!\frac{x}{2}} \:=\:\left(\dfrac{\sin\frac{x}{2}}{\cos\frac{x}{2}}\right)^2 \:=\:\tan^2\!\frac{x}{2} \)