Does anyone know how to prove this (A\B) U (B\A) = (A U B) \ (A ∩ B)
K kiki123 New member Joined Nov 5, 2011 Messages 1 Nov 5, 2011 #1 Does anyone know how to prove this (A\B) U (B\A) = (A U B) \ (A ∩ B)
tkhunny Moderator Staff member Joined Apr 12, 2005 Messages 11,339 Nov 5, 2011 #2 There is an important rule, here. Do SOMETHING. What have you tried? How about an identity or two...let's see...\(\displaystyle A/B = A - A\cap B\) That might lead to something. Let's see what you get.
There is an important rule, here. Do SOMETHING. What have you tried? How about an identity or two...let's see...\(\displaystyle A/B = A - A\cap B\) That might lead to something. Let's see what you get.
pka Elite Member Joined Jan 29, 2005 Messages 11,990 Nov 5, 2011 #3 kiki123 said: Does anyone know how to prove this (A\B) U (B\A) = (A U B) \ (A ∩ B) Click to expand... Well \(\displaystyle A\setminus B\) means \(\displaystyle A\cap B^c\) So what does \(\displaystyle A\setminus B \cup B\setminus A=~?\)
kiki123 said: Does anyone know how to prove this (A\B) U (B\A) = (A U B) \ (A ∩ B) Click to expand... Well \(\displaystyle A\setminus B\) means \(\displaystyle A\cap B^c\) So what does \(\displaystyle A\setminus B \cup B\setminus A=~?\)
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Nov 5, 2011 #4 Hello, kiki123! Definition: .\(\displaystyle A \backslash B \:=\:A \cap \overline{B}\) \(\displaystyle \text{Prove: }\A\backslash B) \cup (B\backslash A) \:=\: (A \cup B) \backslash (A \cap B)\) Click to expand... On the right side: ,. . \(\displaystyle \begin{array}{ccccccc}1. & (A \cup B) \backslash (A \cap B) && 1. & \text{Given} \\ \\ 2. & (A\cup B) \cap (\overline{A\cap B})&& 2. & \text{De{f}inition} \\ \\ 3. & (A\cup B) \cap (\overline{A} \cup \overline{B}) && 3. & \text{DeMorgan} \\ \\ 4. & (A\cap \overline{A}) \cup (A\cap \overline{B}) \cup (B \cap \overline{A}) \cup (B \cap \overline{B}) && 4. & \text{Distributive} \\ \\ 5. & \emptyset \cup (A \cap \overline{B}) \cup (B \cap \overline{A}) \cup \emptyset && 5. & S \cap \overline{S} \:=\:\emptyset \\ \\ 6. & (A\cap \overline{B}) \cup (B \cap \overline{A}) && 6. & S \cup \emptyset \:=\:S \\ \\ 7. & (A \backslash B) \cup (B \backslash A) && 7. & \text{De{f}inition} \end{array}\)
Hello, kiki123! Definition: .\(\displaystyle A \backslash B \:=\:A \cap \overline{B}\) \(\displaystyle \text{Prove: }\A\backslash B) \cup (B\backslash A) \:=\: (A \cup B) \backslash (A \cap B)\) Click to expand... On the right side: ,. . \(\displaystyle \begin{array}{ccccccc}1. & (A \cup B) \backslash (A \cap B) && 1. & \text{Given} \\ \\ 2. & (A\cup B) \cap (\overline{A\cap B})&& 2. & \text{De{f}inition} \\ \\ 3. & (A\cup B) \cap (\overline{A} \cup \overline{B}) && 3. & \text{DeMorgan} \\ \\ 4. & (A\cap \overline{A}) \cup (A\cap \overline{B}) \cup (B \cap \overline{A}) \cup (B \cap \overline{B}) && 4. & \text{Distributive} \\ \\ 5. & \emptyset \cup (A \cap \overline{B}) \cup (B \cap \overline{A}) \cup \emptyset && 5. & S \cap \overline{S} \:=\:\emptyset \\ \\ 6. & (A\cap \overline{B}) \cup (B \cap \overline{A}) && 6. & S \cup \emptyset \:=\:S \\ \\ 7. & (A \backslash B) \cup (B \backslash A) && 7. & \text{De{f}inition} \end{array}\)