Here is my approach of how to solve this problem.
\(\displaystyle \sum_{n=1}^{N}2^{-n}z^n = \sum_{n=1}^{N}\left(\frac{z}{2}\right)^n = \frac{\frac{z}{2}\left(1 - \left(\frac{z}{2}\right)^N\right)}{1 - \frac{z}{2}}\)
This result comes from the fact that the sum is a geometric series.
Now we have this sum:
\(\displaystyle \sum_{n=1}^{10}2^{-n}\sin\left(\frac{n\pi}{10}\right)\)
which is the imaginary part of:
\(\displaystyle \sum_{n=1}^{10}2^{-n}e^{in\pi/10}\)
Since \(\displaystyle e^{in\pi/10} = \cos\left(\frac{n\pi}{10}\right) + i\sin\left(\frac{n\pi}{10}\right)\),
we can solve the sum that contains the exponential and then extract the imaginary part of it.
\(\displaystyle \sum_{n=1}^{10}2^{-n}e^{in\pi/10} = \sum_{n=1}^{10}\left(\frac{e^{i\pi/10}}{2}\right)^n = \frac{\frac{e^{i\pi/10}}{2}\left(1 - \left(\frac{e^{i\pi/10}}{2}\right)^{10}\right)}{1 - \frac{e^{i\pi/10}}{2}}\)
\(\displaystyle = \frac{\frac{e^{i\pi/10}}{2}\left(1 - \left(\frac{e^{i\pi}}{2^{10}}\right)\right)}{1 - \frac{e^{i\pi/10}}{2}} = \frac{\frac{e^{i\pi/10}}{2}\left(\frac{2^{10}}{2^{10}} - \left(\frac{e^{i\pi}}{2^{10}}\right)\right)}{\frac{2}{2} - \frac{e^{i\pi/10}}{2}}= \frac{e^{i\pi/10}\left(2^{10} - e^{i\pi}\right)}{2^{10}(2 - e^{i\pi/10})}\)
We know that \(\displaystyle e^{i\pi} = -1\), then
\(\displaystyle \sum_{n=1}^{10}2^{-n}e^{in\pi/10} = \frac{e^{i\pi/10}\left(2^{10} + 1\right)}{2^{10}(2 - e^{i\pi/10})} = \frac{(2^{10} + 1)(\cos \pi/10 + i\sin \pi/10)}{2^{10}(2 - \cos \pi/10 - i\sin \pi/10)}\)
Multiply the numerator and the denominator by \(\displaystyle (2 - \cos \pi/10 + i\sin \pi/10)\)
\(\displaystyle \color{red} \bold{numerator:}\)\(\displaystyle (\cos \pi/10 + i\sin \pi/10)(2 - \cos \pi/10 + i\sin \pi/10) = 2\cos\left(\frac{\pi}{10}\right) - 1 + 2i\sin\left(\frac{\pi}{10}\right)\)
\(\displaystyle \color{blue} \bold{denominator:}\)\(\displaystyle (2 - \cos \pi/10 - i\sin \pi/10)(2 - \cos \pi/10 + i\sin \pi/10) = 5 - 4\cos\left(\frac{10}{\pi}\right)\)
This gives:
\(\displaystyle \sum_{n=1}^{10}2^{-n}e^{in\pi/10} = \frac{(2^{10} + 1)\bigg[2\cos\left(\frac{\pi}{10}\right) - 1 + 2i\sin\left(\frac{\pi}{10}\right)\bigg]}{2^{10}\bigg[5 - 4\cos\left(\frac{10}{\pi}\right)\bigg]}\)
Take the imaginary part of this result.
\(\displaystyle \sum_{n=1}^{10}2^{-n}\sin\left(\frac{n\pi}{10}\right) = \frac{(2^{10} + 1)\bigg[2\sin\left(\frac{\pi}{10}\right)\bigg]}{2^{10}\bigg[5 - 4\cos\left(\frac{10}{\pi}\right)\bigg]} = \frac{1025\bigg[2\sin\left(\frac{\pi}{10}\right)\bigg]}{1024\bigg[5 - 4\cos\left(\frac{10}{\pi}\right)\bigg]} = \frac{1025\bigg[\sin\left(\frac{\pi}{10}\right)\bigg]}{512\bigg[5 - 4\cos\left(\frac{10}{\pi}\right)\bigg]}\)
\(\displaystyle \textcolor{green}{\textbf{Finally.}}\)
\(\displaystyle \sum_{n=1}^{10}2^{-n}\sin\left(\frac{n\pi}{10}\right) = \frac{1025\sin\left(\frac{\pi}{10}\right)}{2560 - 2048\cos\left(\frac{10}{\pi}\right)}\)