Hello, breanne!
I always ask: Did you make a sketch?
You gave the same focus twice . . . I assume it's a typo.
I also assume that \(\displaystyle b_1,\,b_2\) are the \(\displaystyle b\)-values in: \(\displaystyle \L\frac{x^2}{a^2}\,+\,\frac{y^2}{b^2}\:=\:1\)
	
	
		
		
			An ellipse has foci \(\displaystyle f_1(3,\,0)\) and \(\displaystyle f_2(-3,\,0)\)
Determine the equation of the ellipse so that quadrilateral \(\displaystyle f_1b_1f_2b_2\) is a square.
		
		
	 
	
	
	
		Code:
	
	
		                b1
              * * *
         *    / | \    *
     *      /   |   \      *
    *     /     |     \     *
 a2 *---*-------+-------*---* a1
    *  f2 \     |     / f1  *
     *      \   |   /      *
         *    \ | /    *
              * * *
                b2
	 
 Once you make a sketch, the answer is almost obvious . . .
They gave us: \(\displaystyle \,c\,=\,3\)
If that quadrilateral is a square, then \(\displaystyle \,b\,=\,3\)
From \(\displaystyle \,a^2\:=\:b^2\,+\,c^2\), we have: \(\displaystyle \,a^2\:=\:3^2\,+\,3^2\:=\:18\)
The equation of the ellipse is: \(\displaystyle \L\,\frac{x^2}{18}\,+\,\frac{y^2}{9}\:=\:1\)