Can somebody please help me with the following problem?
\(\displaystyle 3.\, \mbox{ If we know }\, \delta(t)\, =\, \dfrac{4}{t\, +\, 3},\, \mbox{ then calculate }\, a(t).\)
\(\displaystyle a.\, \left(\dfrac{t\, +\, 3}{3}\right)^4\)
\(\displaystyle b.\, 4\, \ln\left(\dfrac{t\, +\, 3}{3}\right)\)
\(\displaystyle c.\, e^{\left(\dfrac{4}{t\, +\, 3}\right)}\)
\(\displaystyle d.\, \ln\left(\dfrac{t\, +\, 3}{4}\right)\)
\(\displaystyle e.\, e^{\left(\dfrac{t\, +\, 3}{4}\right)}\)
What is the correct answer, and how to solve it?
Regards,
\(\displaystyle 3.\, \mbox{ If we know }\, \delta(t)\, =\, \dfrac{4}{t\, +\, 3},\, \mbox{ then calculate }\, a(t).\)
\(\displaystyle a.\, \left(\dfrac{t\, +\, 3}{3}\right)^4\)
\(\displaystyle b.\, 4\, \ln\left(\dfrac{t\, +\, 3}{3}\right)\)
\(\displaystyle c.\, e^{\left(\dfrac{4}{t\, +\, 3}\right)}\)
\(\displaystyle d.\, \ln\left(\dfrac{t\, +\, 3}{4}\right)\)
\(\displaystyle e.\, e^{\left(\dfrac{t\, +\, 3}{4}\right)}\)
What is the correct answer, and how to solve it?
Regards,
Last edited by a moderator: