First, a little simplification. If x= 0.8888... then \(\displaystyle x= \frac{8}{9}\).
If \(\displaystyle log_A(5)= \frac{8}{9}\) then \(\displaystyle A^{\frac{8}{9}}= 5\). To solve for A take the logarithm of both sides, (8/9)Log(A)= log(5) , using whichever base you prefer, common log or natural log.
Using the common logarithm, log(5)= 0.6990 (to four decimal places) so \(\displaystyle log(A)= \frac{9}{8}(0.6990)= 0.7863\) and \(\displaystyle A= 10^{0.7863}= 6.114\).
Using the natural logarithm, ln(5)=1.609 so \(\displaystyle ln(A)= \frac{9}{8}(1.609)= 1.8106\) and \(\displaystyle A= e^{1.8106}= 6.114\) again.