Hello, beltran!
I hope you aren't too rusty . . .
Subhotosh gave you the equations.
. . Ellipse: .\(\displaystyle \frac{x^2}{1^2} + \frac{y^2}{(\frac{3}{5})^2} \;=\;1 \quad\Rightarrow\quad 9x^2 + 25y^2 \;=\;9\;\;[1]\)
. . Line: .\(\displaystyle y \;=\;x - \frac{2}{5}\;\;[2]\)
Substitute [2] into [1]:
. . \(\displaystyle 9x^2 + 25\left(x-\tfrac{2}{5}\right)^2 \;=\;9 \)
. . \(\displaystyle 9x^2 + 25\left(x^2 - \tfrac{4}{5}x + \tfrac{4}{25}\right) \;=\;9 \)
. . \(\displaystyle 9x^2 + 25x^2 - 20x + 4 \;=\;9\)
. . \(\displaystyle 34x^2 - 20x - 5 \;=\;0\)
Quadratic Formula:
. . \(\displaystyle x \;=\;\frac{20\,\pm\sqrt{20^2 - 4(34)(-5)}}{2(34)} \;=\;\frac{20\,\pm\sqrt{1080}}{68} \;=\;\frac{20\pm6\sqrt{30}}{68}\)
. . \(\displaystyle x \;=\;\frac{10\,\pm\,3\sqrt{30}}{34}\)
\(\displaystyle y \;=\;x - \frac{2}{5} \;=\;\frac{10\,\pm\,3\sqrt{30}}{34} - \frac{2}{5}\)
. . \(\displaystyle y \;=\;\frac{-18\,\pm\,15\sqrt{30}}{170}\)
The point in Quadrant I is: .\(\displaystyle \left(\dfrac{10\,+\,3\sqrt{30}}{34},\;\dfrac{-18\,+\,15\sqrt{30}}{170}\right)\)