inverse Fourier transform

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
2,214
Determine the inverse Fourier transform of the frequency function \(\displaystyle G(f)\) defined by the amplitude and phase spectra shown in the figure.

inverse_Fourier.png
 
One way to define these spectrums is:

\(\displaystyle G(f) = \begin{cases} j, & -W < f < 0 \\-j, & 0 \leq f < W \\0, & \text{otherwise}\end{cases}\)

Or

\(\displaystyle G(f) = -j\text{sgn}(f) + ju(f - W) - ju(-f - W)\)
 
🍒💙

Let \(\displaystyle h(t) = \text{sgn}(t)\).

\(\displaystyle \mathcal{F}\{h(t)\} = H(f) = \frac{1}{j\pi f}\)

By duality property,

\(\displaystyle \mathcal{F}^{-1}\{\text{sgn}(f)\} = H(-t) = -\frac{1}{j\pi t}\)

Let \(\displaystyle G_1(f) = -j\text{sgn}(f)\), then

\(\displaystyle \mathcal{F}^{-1}\{-j\text{sgn}(f)\} = -j\frac{-1}{j\pi t} = \textcolor{green}{\frac{1}{\pi t}}\)
 
We will define \(\displaystyle u(t)\) as

\(\displaystyle u(t) = \frac{1}{2}\bigg(\text{sgn}(t) + 1\bigg)\)


\(\displaystyle \mathcal{F}\bigg\{u(t)\bigg\} = \frac{1}{2}\bigg(\frac{1}{j\pi f} + \delta(f)\bigg)\)


\(\displaystyle \mathcal{F}\bigg\{u(t - W)\bigg\} = \frac{1}{2}\bigg(\frac{1}{j\pi f} + \delta(f)\bigg)e^{-j2\pi Wf} \ \ \ \ \ \textcolor{red}{\bold{shifting \ property.}}\)


\(\displaystyle \mathcal{F}^{-1}\bigg\{u(f - W)\bigg\} = \frac{1}{2}\bigg(-\frac{1}{j\pi t} + \delta(t)\bigg)e^{j2\pi Wt} \ \ \ \ \ \textcolor{indigo}{\bold{duality \ property.}}\)
 
:devilish:😈


Using the same reasoning above, we get:

\(\displaystyle \mathcal{F}^{-1}\bigg\{u\left(f + W\right)\bigg\} = \frac{1}{2}\bigg(-\frac{1}{j\pi t} + \delta(t)\bigg)e^{-j2\pi Wt}\)
 
\(\displaystyle G(f) = -j\text{sgn}(f) + ju(f - W) - ju(-f - W)\)
Now we can find the inverse Fourier transform of the above.


\(\displaystyle g(t) = \mathcal{F}^{-1}\bigg\{G(f)\bigg\} = \frac{1}{\pi t} + j\frac{1}{2}\bigg(-\frac{1}{j\pi t} + \delta(t)\bigg)e^{j2\pi Wt} - j\frac{1}{2}\bigg(-\frac{1}{j\pi t} + \delta(t)\bigg)e^{-j2\pi Wt}\)



\(\displaystyle = \frac{1}{\pi t} - \frac{1}{2\pi t}e^{j2\pi Wt} + j\frac{\delta(t)}{2} + \frac{1}{2\pi t}e^{-j2\pi Wt} - j\frac{\delta(t)}{2}\)



\(\displaystyle = \frac{1}{\pi t} - \frac{1}{2\pi t}e^{j2\pi Wt} + \frac{1}{2\pi t}e^{-j2\pi Wt}\)

With a little simplification, we get:

\(\displaystyle g(t) = \textcolor{indigo}{\frac{1}{\pi t} - \frac{j\sin(2\pi Wt)}{\pi t}}\)
 
Top