Solve. (y^2 + 1) \ dx = y \sec^2 x \ dy
logistic_guy Senior Member Joined Apr 17, 2024 Messages 2,214 Aug 11, 2025 #1 Solve. \(\displaystyle (y^2 + 1) \ dx = y \sec^2 x \ dy\)
logistic_guy Senior Member Joined Apr 17, 2024 Messages 2,214 Aug 12, 2025 #2 logistic_guy said: \(\displaystyle (y^2 + 1) \ dx = y \sec^2 x \ dy\) Click to expand... \(\displaystyle (y^2 + 1) \ dx = y \sec^2 x \ dy\) \(\displaystyle \frac{1}{\sec^2 x} \ dx = \frac{y}{y^2 + 1} \ dy\) \(\displaystyle \cos^2 x \ dx = \frac{y}{y^2 + 1} \ dy\) \(\displaystyle \int \cos^2 x \ dx = \int \frac{y}{y^2 + 1} \ dy\) \(\displaystyle \frac{1}{2}\int (1 + \cos 2x) \ dx = \frac{1}{2}\int \frac{2y}{y^2 + 1} \ dy\) \(\displaystyle \textcolor{blue}{\frac{x}{2} + \frac{\sin 2x}{4} = \frac{1}{2}\ln\left(y^2 + 1\right) + c}\)
logistic_guy said: \(\displaystyle (y^2 + 1) \ dx = y \sec^2 x \ dy\) Click to expand... \(\displaystyle (y^2 + 1) \ dx = y \sec^2 x \ dy\) \(\displaystyle \frac{1}{\sec^2 x} \ dx = \frac{y}{y^2 + 1} \ dy\) \(\displaystyle \cos^2 x \ dx = \frac{y}{y^2 + 1} \ dy\) \(\displaystyle \int \cos^2 x \ dx = \int \frac{y}{y^2 + 1} \ dy\) \(\displaystyle \frac{1}{2}\int (1 + \cos 2x) \ dx = \frac{1}{2}\int \frac{2y}{y^2 + 1} \ dy\) \(\displaystyle \textcolor{blue}{\frac{x}{2} + \frac{\sin 2x}{4} = \frac{1}{2}\ln\left(y^2 + 1\right) + c}\)