The general solution is:
\(\displaystyle \bold{X} = c_1\bold{X}_1 + c_2\bold{X}_2 = c_1\begin{bmatrix}1 \\2 - i \end{bmatrix}e^{(4+i)t}+ c_2\begin{bmatrix}1 \\2 + i \end{bmatrix} e^{(4 - i)t}\)
But this is not the best notation to use. We would love to write the solution in terms of trigonometric functions and without the imaginary \(\displaystyle i\).
Therefore, we will use the following Theorem \(\displaystyle (\textcolor{blue}{\bold{Theorem}} \textcolor{red}{\bold{69}})\):
\(\displaystyle \bold{X}_1 = (\bold{B}_1\cos \beta t - \bold{B}_2\sin \beta t)e^{\alpha t}\)
\(\displaystyle \bold{X}_2 = (\bold{B}_2\cos \beta t + \bold{B}_1\sin \beta t)e^{\alpha t}\)
where \(\displaystyle \bold{B}_1\) and \(\displaystyle \bold{B}_2\) are the real and imaginary parts of \(\displaystyle \bold{K}_1\) respectively. And \(\displaystyle \alpha\) and \(\displaystyle \beta\) are the real and imaginary parts of \(\displaystyle \lambda_1\) respectively, where \(\displaystyle \lambda_1 = \alpha + i\beta\) is the eigenvalue of \(\displaystyle \bold{K}_1\).
Let us write \(\displaystyle \bold{K}_1\) again.
\(\displaystyle \bold{K}_1 = \begin{bmatrix}1 \\2 - i \end{bmatrix} = \begin{bmatrix}1 \\2 \end{bmatrix} + i\begin{bmatrix}0 \\-1 \end{bmatrix}\)
Then,
\(\displaystyle \bold{X}_1 = \left(\begin{bmatrix}1 \\2 \end{bmatrix}\cos t - \begin{bmatrix}0 \\-1 \end{bmatrix}\sin t\right)e^{4 t}\)
\(\displaystyle \bold{X}_2 = \left(\begin{bmatrix}0 \\-1 \end{bmatrix}\cos t + \begin{bmatrix}1 \\2 \end{bmatrix}\sin t\right)e^{4 t}\)
And the general solution is:
\(\displaystyle \bold{X} = c_1\left(\begin{bmatrix}1 \\2 \end{bmatrix}\cos t - \begin{bmatrix}0 \\-1 \end{bmatrix}\sin t\right)e^{4 t} + c_2\left(\begin{bmatrix}0 \\-1 \end{bmatrix}\cos t + \begin{bmatrix}1 \\2 \end{bmatrix}\sin t\right)e^{4 t}\)
With a little simplification, the general solution becomes:
\(\displaystyle \bold{X} = \textcolor{blue}{c_1\begin{bmatrix}\cos t \\2\cos t + \sin t \end{bmatrix}e^{4 t} + c_2\begin{bmatrix}\sin t \\2\sin t - \cos t \end{bmatrix}e^{4 t}}\)