matrix

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
2,214
Solve.

\(\displaystyle \bold{X}' = \begin{bmatrix}1 & 3 \\5 & 3 \end{bmatrix} \bold{X}\)
 
That question is pure rubbish unless you tell us about \(\displaystyle \bold{X}\ \&\ \bold{X'}\)
Those Russian authors use ambiguous notations even a great mathematician like pka got confused. You, pka, are probably from \(\displaystyle \text{Japan}\) and I can understand your situation. It is not your fault if this is the first time you are seeing this!

😩

\(\displaystyle \bold{X}' = \begin{bmatrix}1 & 3 \\5 & 3 \end{bmatrix} \bold{X}\)
This can be written like this:

\(\displaystyle \begin{bmatrix}x'(t) \\y'(t) \end{bmatrix} = \begin{bmatrix}1 & 3 \\5 & 3 \end{bmatrix} \begin{bmatrix}x(t) \\y(t) \end{bmatrix}\)


My intuition tells me that your field is Banking. And I love Accounting. Yeah I know that they are not the same thing but we both love money, assets, and financial records.

🤔

We can play many games together if you are interested. We have a great future as a team!

😍🤩
 
We start with:

\(\displaystyle \bold{A} - \lambda\bold{I} = \begin{bmatrix}1 & 3 \\5 & 3 \end{bmatrix} - \lambda \begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix} = \begin{bmatrix}1 & 3 \\5 & 3 \end{bmatrix} - \begin{bmatrix}\lambda & 0 \\0 & \lambda \end{bmatrix} = \begin{bmatrix}1 - \lambda & 3 \\5 & 3 - \lambda \end{bmatrix}\)

💪🗿🗿
 
We start with:

\(\displaystyle \bold{A} - \lambda\bold{I} = \begin{bmatrix}1 & 3 \\5 & 3 \end{bmatrix} - \lambda \begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix} = \begin{bmatrix}1 & 3 \\5 & 3 \end{bmatrix} - \begin{bmatrix}\lambda & 0 \\0 & \lambda \end{bmatrix} = \begin{bmatrix}1 - \lambda & 3 \\5 & 3 - \lambda \end{bmatrix}\)

💪🗿🗿
Now what? Where are you stuck?
 
\(\displaystyle \begin{bmatrix}1 - \lambda & 3 \\5 & 3 - \lambda \end{bmatrix}\)
The next step is to find the determinant of this matrix and set it equal to zero.

\(\displaystyle \left| \begin{array}{cc}1 - \lambda & 3 \\5 & 3 - \lambda \end{array} \right| = (1 - \lambda)(3 - \lambda) - 3(5) = 0\)

This gives:

\(\displaystyle \lambda_1 = -2\)
\(\displaystyle \lambda_2 = 6\)
 
Now what? Where are you stuck?
The next step is the most difficult step, yet the most beautiful.

😍

If the eigenvalues \(\displaystyle \lambda\) are distinct real eigenvalues, then the solution to our matrix (or system) is:

\(\displaystyle \bold{X} = c\bold{K}e^{\lambda t}\)

That is:

\(\displaystyle \bold{X} = c_1\bold{X}_1 + c_2\bold{X_2} = c_1\bold{K}_1e^{\lambda_1 t} + c_2\bold{K}_2e^{\lambda_2 t}\)

How to find \(\displaystyle \bold{K}_1\) and \(\displaystyle \bold{K}_2\)?

We know that the matrix \(\displaystyle \bold{K}_1 = \begin{bmatrix}k_1 \\k_2 \end{bmatrix}\) belongs to the eigenvalue \(\displaystyle \lambda_1 = -2\), then we have this system to solve:

\(\displaystyle (1 - \lambda_1)k_1 + 3k_2 = 0\)
\(\displaystyle 5k_1 + (3 - \lambda_1)k_2 = 0\)

Or

\(\displaystyle 3k_1 + 3k_2 = 0\)
\(\displaystyle 5k_1 + 5k_2 = 0\)

If we choose \(\displaystyle k_1 = 1\), then \(\displaystyle k_2 = -1\) and we have:

\(\displaystyle \bold{K_1} = \begin{bmatrix}1 \\-1 \end{bmatrix}\)

We also know that the matrix \(\displaystyle \bold{K}_2 = \begin{bmatrix}k_1 \\k_2 \end{bmatrix}\) belongs to the eigenvalue \(\displaystyle \lambda_2 = 6\), then we have this system to solve:

\(\displaystyle -5k_1 + 3k_2 = 0\)
\(\displaystyle 5k_1 - 3k_2 = 0\)

We see that \(\displaystyle k_1 = \frac{3}{5}k_2\), so if we choose \(\displaystyle k_2 = 5\), we get:

\(\displaystyle \bold{K_2} = \begin{bmatrix}3 \\5 \end{bmatrix}\)

Finally, we can write the general solution as:

\(\displaystyle \bold{X} = c_1\bold{K}_1e^{\lambda_1 t} + c_2\bold{K}_2e^{\lambda_2 t} = c_1\begin{bmatrix}1 \\-1 \end{bmatrix}e^{-2t} + c_2\begin{bmatrix}3 \\5 \end{bmatrix}e^{6t}\) (Matrix form)

Or (Normal form)

\(\displaystyle x(t) = c_1e^{-2t} + 3c_2e^{e^{6t}}\)
\(\displaystyle y(t) = -c_1e^{-2t} + 5c_2e^{e^{6t}}\)

We can also write the system solution in a more clean way like:

\(\displaystyle x(t) = Ae^{-2t} + Be^{e^{6t}}\)
\(\displaystyle y(t) = Ce^{-2t} + De^{e^{6t}}\)

But we have to keep track of what those \(\displaystyle 4\) constants are. I myself as a professional skydiver, prefer the Matrix form!

💙woman_2.png 💚
 
Last edited:
Top