Let \(\displaystyle L\,=\,\frac{(a^2\,+\,b^2)\,-\,(c^2\,+\,d^2)}{2(c\,+\,d\,-\,a\,-\,b)} \)
Find the maximum value attainable by L in terms of p, given the below conditions:
\(\displaystyle a,\,b,\,c,\,d\, \in\, \left\{0,\,1,\,2,\,\ldots,\,p\,-\,1\right\}\,\)
\(\displaystyle a\, \neq\, b\)
\(\displaystyle c\, \neq\, d\)
Find the maximum value attainable by L for a, given
\(\displaystyle 0\,\leq\, a,\,b,\,c,\,d\, \leq\, (p\,-\,1).\)
kind help
Find the maximum value attainable by L in terms of p, given the below conditions:
\(\displaystyle a,\,b,\,c,\,d\, \in\, \left\{0,\,1,\,2,\,\ldots,\,p\,-\,1\right\}\,\)
\(\displaystyle a\, \neq\, b\)
\(\displaystyle c\, \neq\, d\)
Find the maximum value attainable by L for a, given
\(\displaystyle 0\,\leq\, a,\,b,\,c,\,d\, \leq\, (p\,-\,1).\)
kind help
Last edited by a moderator: