I need to use the method of undetermined coefficients to solve the equation:
y'' - 5y' + 6y = 3e3x + 5x - 2
I'm having trouble with determining yp for the right side of the equation.
Current Work:
am2 + bm + c = 0
m2 - 5m + 6 = 0
(m-2)(m-3) = 0
m = 2,3
yh = C1e2x + C2e3x
yp = Ae3x + Bx + C
y'p = 3Ae3x + B
y''p = 9Ae3x
9Ae3x - 5(3Ae3x + B) + 6(Ae3x + Bx + C) = 3e3x + 5x - 2
9Ae3x - 15Ae3x - 5B + 6Ae3x + 6Bx + 6C = 3e3x + 5x - 2
9Ae3x - 15Ae3x + 6Ae3x = 0
0e3x = 0 ????
It doesn't seem like this step is correct.
y'' - 5y' + 6y = 3e3x + 5x - 2
I'm having trouble with determining yp for the right side of the equation.
Current Work:
am2 + bm + c = 0
m2 - 5m + 6 = 0
(m-2)(m-3) = 0
m = 2,3
yh = C1e2x + C2e3x
yp = Ae3x + Bx + C
y'p = 3Ae3x + B
y''p = 9Ae3x
9Ae3x - 5(3Ae3x + B) + 6(Ae3x + Bx + C) = 3e3x + 5x - 2
9Ae3x - 15Ae3x - 5B + 6Ae3x + 6Bx + 6C = 3e3x + 5x - 2
9Ae3x - 15Ae3x + 6Ae3x = 0
0e3x = 0 ????
It doesn't seem like this step is correct.