y = xy' + 1/y' with boundary condition y(0) = 0
Ideally the method of solution involves the following step:
Let p = y' and y = f(x,p)
Why "ideally"? Did the instructions tell you to use this step?
What have you tried so far? Where are you stuck?
Please be complete. Thank you!
Note: Wolfram Alpha suggests that "the solution", without the boundary condition, will be along the following lines:
. . .\(\displaystyle y(x)\, =\, -\frac{
\left(
\sqrt{
x^2 \sinh(c_1)\,+\,x^2 \cosh(c_1)\, -\, 8x \sinh(c_1)\, +\, 2x \sinh(2 c_1)\, -\, 8x \cosh(c_1)\, +\, 2x \cosh(2 c_1)\, +\, 16 \sinh(c_1)\, -\, 8 \sinh(2 c_1)\, +\, \sinh(3 c_1)\, +\, 16 \cosh(c_1)\, -\, 8 \cosh(2 c_1)\, +\, \cosh(3 c_1)\,
}
\right)
}{
\left(
\sinh(c_1)\,+\,\cosh(c_1)\,-\,4
\right)
} \)
. . . . .\(\displaystyle +\, \frac{2 x}{\sinh(c_1)\,+\,\cosh(c_1)-4} \, -\, \frac{2 \cosh(c_1)}{\sinh(c_1)\,+\,\cosh(c_1)-4} \,-\, \frac{2 \sinh(c_1)}{\sinh(c_1)\,+\,\cosh(c_1)\,-\,4} \,+\, \frac{8}{\sinh(c_1)\,+\,\cosh(c_1)\,-\,4}\)
With the boundary condition, the solution cannot be found within the allotted time. Are you sure you entered the equation correctly?