normal stress and shear stress

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
2,214
Determine the normal stress and shear stress acting on the inclined plane \(\displaystyle AB\). Sketch the result on the sectioned element.

normal_shear_stress.png
 
Determine the normal stress
\(\displaystyle \textcolor{red}{\bold{normal \ stress}}\)

\(\displaystyle \sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2}\cos2\theta + \tau_{xy}\sin 2\theta\)


\(\displaystyle = \frac{500 \times 10^3 + 0}{2} + \frac{500 \times 10^3 - 0}{2}\cos(2 \times 120^{\circ}) + 0 = 125000 \ \text{Pa} = \textcolor{blue}{125 \ \text{kPa}}\)
 
\(\displaystyle \textcolor{blue}{\bold{shear \ stress}}\)

\(\displaystyle \gamma_{x'y'} = -\frac{\epsilon_x - \epsilon_y}{2}\sin 2\theta + \gamma_{xy}\cos 2\theta\)


\(\displaystyle = -\frac{500 \times 10^{3} - 0}{2}\sin(2 \times 120^{\circ}) + 0 = 216506 \ \text{Pa} = \textcolor{red}{216.506 \ \text{kPa}}\)
 
Top