ii) De Moivre’s Theorum 
 Let \(\displaystyle \L z \, = \, 1 \, + \, i\)
Although this is relatively ok, it's always a good idea to sketch an Argand diagram to ensure we calculate the correct argument.
	
	
	
		Code:
	
	
		             /|\ Im
              |
              |
              |
            1 + - - - - *
              |       * :
              |     *   :
              |   *\    :
              | *   |   :
      --------+---------+----->
              |         1     Re
              |
              |
	 
 
\(\displaystyle \L |z| \, = \sqrt{1^2 \, + \, 1^2} \, = \, \sqrt{2} \, = \, 2^{\frac{1}{2}}\)
\(\displaystyle \L  Arg(z) \, = \, \tan^{-1}{\left(\frac{ \, 1 \, }{ \, 1 \, }\right)} \, =  \, \frac{\pi}{4}\)
So \(\displaystyle \L z \, = \, 2^{\frac{1}{2}} \left(\cos{\left(\frac{\pi}{4}\right)} \, + \, i\sin{\left(\frac{\pi}{4}\right)}\right)\)
Now apply De Moivre's Theorem to find \(\displaystyle \L z^{\frac{ \, 1 \, }{ \, 2 \, }}\) .