Monkeyseat
Full Member
- Joined
- Jul 3, 2005
- Messages
- 298
Question:
Prove the identity (cosecA + cotA)^2 = (1+cosA)/(1-cosA)
Working:
(cosecA + cotA)^2 = cosec^2 A + 2(cosecA * cotA) + cot^2 A
(cosecA + cotA)^2 = 1/(sin^2 A) + 2((1/sinA) * (cosA/sinA)) + (cos^2 A)/(sin^2 A)
(cosecA + cotA)^2 = (1 + 2cosA + cos^2 A)/(sin^2 A)
(cosecA + cotA)^2 = (1 + 2cosA + cos^2 A)/(1 - cos^2 A)
That's as far as I can get, I can't get to (1+cosA)/(1-cosA). Can someone please help?
Sorry if the formatting is a bit confusing.
Thanks.
Prove the identity (cosecA + cotA)^2 = (1+cosA)/(1-cosA)
Working:
(cosecA + cotA)^2 = cosec^2 A + 2(cosecA * cotA) + cot^2 A
(cosecA + cotA)^2 = 1/(sin^2 A) + 2((1/sinA) * (cosA/sinA)) + (cos^2 A)/(sin^2 A)
(cosecA + cotA)^2 = (1 + 2cosA + cos^2 A)/(sin^2 A)
(cosecA + cotA)^2 = (1 + 2cosA + cos^2 A)/(1 - cos^2 A)
That's as far as I can get, I can't get to (1+cosA)/(1-cosA). Can someone please help?
Sorry if the formatting is a bit confusing.
Thanks.