There is a second-order non-homogeneous differential equation, as follows:
. . . . .\(\displaystyle x^2 y"\, -\, 3xy'\, +\, 4y\, =\, \log(x)\)
I have to find the solution. Here is my attempt:
First, I found the solution to the homogeneous equation. It is a repeated root, so:
. . . . .\(\displaystyle yp\, =\, Ax\ln(x)\, +\, Bx^2\)
Here for the non-homogeneous equation, I used variation parameter:
. . . . .\(\displaystyle y_1\, =\, x^2 \ln(x)\)
. . . . .\(\displaystyle y_2\, =\, x^2\)
Using the Wronskian and Cramer's Rule:
. . . . .\(\displaystyle yp\, =\, u_1.y_1\, +\, u_2.y_2\)
. . . . .\(\displaystyle W\, =\, \left[\begin{matrix}x^2 \ln(x) & x^2 \\ 2x \ln(x)\, +\, x & 2x\end{matrix}\right]\, =\, -x^3\)
. . . . .\(\displaystyle W_1\, =\, \left[\begin{matrix}0 & x^2 \\ \log(x) & 2x\end{matrix}\right]\, =\, -x^2 \ln(x)\)
. . . . .\(\displaystyle W_2\, =\, \left[\begin{matrix}x^2 \ln(x) & 0 \\ 2x \ln(x)\, +\, x & \log(x)\end{matrix}\right]\, =\, x^2 \ln^2(x)\)
. . . . .\(\displaystyle u'\, =\, \dfrac{W_1}{W}\, \dfrac{-x^2 \ln(x)}{-x^3}\, =\, \dfrac{\ln(x)}{x}\)
. . . . .\(\displaystyle u'\, =\, \dfrac{W_2}{W}\, \dfrac{-x^2 \ln^2(x)}{-x^3}\, =\, \dfrac{-\ln^2(x)}{x}\)
I integrated to find u1 and u2:
. . . . .\(\displaystyle u_1\, =\, \frac{1}{2} \ln^2(x)\)
. . . . .\(\displaystyle u_2\, =\, -\frac{1}{3} \ln^3(x)\)
Then:
. . . . .\(\displaystyle yp\, =\, u_1.y_1\, +\, u_2.y_2\)
. . . . . . . .\(\displaystyle =\, \frac{1}{2} \ln^2(x).x^2 \ln(x)\, -\, \frac{1}{3} \ln^3(x).x^2\, =\, \frac{1}{6} x^2 \ln^3(x)\)
Is this correct?
By the way, the book says that the answer is:
. . . . .\(\displaystyle y\, =\, x^2 \left(A \log(x)\, +\, B\right)\, +\, \frac{1}{?} \left(\log(x)\, +\, 1\right)\)
Why this is not
Sent from my iPhone using Tapatalk
. . . . .\(\displaystyle x^2 y"\, -\, 3xy'\, +\, 4y\, =\, \log(x)\)
I have to find the solution. Here is my attempt:
First, I found the solution to the homogeneous equation. It is a repeated root, so:
. . . . .\(\displaystyle yp\, =\, Ax\ln(x)\, +\, Bx^2\)
Here for the non-homogeneous equation, I used variation parameter:
. . . . .\(\displaystyle y_1\, =\, x^2 \ln(x)\)
. . . . .\(\displaystyle y_2\, =\, x^2\)
Using the Wronskian and Cramer's Rule:
. . . . .\(\displaystyle yp\, =\, u_1.y_1\, +\, u_2.y_2\)
. . . . .\(\displaystyle W\, =\, \left[\begin{matrix}x^2 \ln(x) & x^2 \\ 2x \ln(x)\, +\, x & 2x\end{matrix}\right]\, =\, -x^3\)
. . . . .\(\displaystyle W_1\, =\, \left[\begin{matrix}0 & x^2 \\ \log(x) & 2x\end{matrix}\right]\, =\, -x^2 \ln(x)\)
. . . . .\(\displaystyle W_2\, =\, \left[\begin{matrix}x^2 \ln(x) & 0 \\ 2x \ln(x)\, +\, x & \log(x)\end{matrix}\right]\, =\, x^2 \ln^2(x)\)
. . . . .\(\displaystyle u'\, =\, \dfrac{W_1}{W}\, \dfrac{-x^2 \ln(x)}{-x^3}\, =\, \dfrac{\ln(x)}{x}\)
. . . . .\(\displaystyle u'\, =\, \dfrac{W_2}{W}\, \dfrac{-x^2 \ln^2(x)}{-x^3}\, =\, \dfrac{-\ln^2(x)}{x}\)
I integrated to find u1 and u2:
. . . . .\(\displaystyle u_1\, =\, \frac{1}{2} \ln^2(x)\)
. . . . .\(\displaystyle u_2\, =\, -\frac{1}{3} \ln^3(x)\)
Then:
. . . . .\(\displaystyle yp\, =\, u_1.y_1\, +\, u_2.y_2\)
. . . . . . . .\(\displaystyle =\, \frac{1}{2} \ln^2(x).x^2 \ln(x)\, -\, \frac{1}{3} \ln^3(x).x^2\, =\, \frac{1}{6} x^2 \ln^3(x)\)
Is this correct?
By the way, the book says that the answer is:
. . . . .\(\displaystyle y\, =\, x^2 \left(A \log(x)\, +\, B\right)\, +\, \frac{1}{?} \left(\log(x)\, +\, 1\right)\)
Why this is not
Sent from my iPhone using Tapatalk
Last edited by a moderator: