simple electric circuit - 2

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
2,214
Solve for \(\displaystyle i(t)\) given \(\displaystyle i(0) = 0\).

simple_2.png
Assume that \(\displaystyle v(t) = u(t), R = 1 \ \Omega, L = 0.5 \ \text{H}\) and \(\displaystyle 1/LC = 16\).
 
\(\displaystyle v - iR - L\frac{di}{dt} - \frac{1}{C}\int i \ dt = 0\)

We know that \(\displaystyle i = \frac{dq}{dt}\), then

\(\displaystyle v - R\frac{dq}{dt} - L\frac{d^2 q}{dt^2} - \frac{1}{C}q = 0\)


\(\displaystyle L\frac{d^2 q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = v\)
 
\(\displaystyle L\frac{d^2 q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = v\)
We continue from here.

\(\displaystyle L\frac{d^2 q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = v\)


\(\displaystyle \frac{d^2 q}{dt^2} + \frac{R}{L}\frac{dq}{dt} + \frac{1}{LC}q = \frac{v}{L}\)


\(\displaystyle \frac{d^2 q}{dt^2} + 2\frac{dq}{dt} + 16q = 2\)


\(\displaystyle r = \frac{-2 \pm \sqrt{4 - 4(1)(16)}}{2(1)}\)

\(\displaystyle r = -1 \pm i\sqrt{15}\)

\(\displaystyle q(t) = c_1e^{-t}\cos \sqrt{15}t + c_2e^{-t}\sin \sqrt{15}t + \frac{1}{8}\)


\(\displaystyle i(0) = 0\) also means \(\displaystyle q(0) = 0\), then


\(\displaystyle c_1 = -\frac{1}{8}\)


\(\displaystyle q(t) = -\frac{1}{8}e^{-t}\cos \sqrt{15}t + c_2e^{-t}\sin \sqrt{15}t + \frac{1}{8}\)


\(\displaystyle i(t) = \frac{dq}{dt} = \frac{1}{8}e^{-t}\bigg[\left(\sqrt{15} - 8c_2\right)\sin\sqrt{15}t + \left(8\sqrt{15}c_2 + 1\right)\cos\sqrt{15}t\bigg]\)

Apply \(\displaystyle i(0) = 0\).


\(\displaystyle 0 = \frac{1}{8}e^{-t}\bigg[\left(8\sqrt{15}c_2 + 1\right)\bigg]\)


\(\displaystyle c_2 = -\frac{1}{8\sqrt{15}}\)


\(\displaystyle i(t) = \frac{1}{8}e^{-t}\bigg[\left(\sqrt{15} + \frac{1}{\sqrt{15}}\right)\sin\sqrt{15}t\bigg]\)


Simplify.


\(\displaystyle i(t) = \frac{2}{\sqrt{15}}e^{-t}\sin\sqrt{15}t\)
 
Top