sin^2(theta)*cos^2(theta)=(1/8)*(1-cos(4(theta)))

codycenters

New member
Joined
Apr 12, 2011
Messages
5
could anyone please help me establish the identity
sin^2(theta)*cos^2(theta)=(1/8)*(1-cos(4(theta))) step-by-step?
 
codycenters said:
could anyone please help me establish the identity
sin^2(theta)*cos^2(theta)=(1/8)*(1-cos(4(theta))) step-by-step?

Expand cos(4?) in terms of cos(?) and sin(?) first.

Please share your work with us, indicating exactly where you are stuck - so that we may know where to begin to help you.
 
Hello, codycenters1

We need these two identities:

. . \(\displaystyle \frac{1-\cos2x}{2} \:=\:\sin^2\!x \qquad\qquad \sin2x \:=\:2\sin x\cos x\)


\(\displaystyle \text{Prove: }\:\sin^2\!\theta\cos^2\!\theta \:=\: \tfrac{1}{8}(1-\cos 4\theta)\)

\(\displaystyle \text{Right side: }\:\tfrac{1}{8}(1 - \cos4\theta) \;=\;\tfrac{1}{4}\left(\frac{1-\cos4\theta}{2}\right)\)

. . . . . . . . . . . . . . . . . .\(\displaystyle =\;\tfrac{1}{4}\sin^2\!2\theta\)

. . . . . . . . . . . . . . . . . .\(\displaystyle =\;\tfrac{1}{4}(2\sin\theta\cos\theta)^2\)

. . . . . . . . . . . . . . . . . .\(\displaystyle =\;\tfrac{1}{4}(4\sin^2\!\theta\cos^2\!\theta)\)

. . . . . . . . . . . . . . . . . .\(\displaystyle =\;\sin^2\!\theta\cos^2\!\theta\)

 
Top