Solve the inequality [MATH]\log_3(\tan^2 x-1) \geq \log_5 25[/MATH].
My work: it must be [MATH]\tan^2 x-1>0 \iff -\frac{\pi}{2}+k\pi < x < -\frac{\pi}{4}+k\pi \lor \frac{\pi}{4}+k\pi < x < \frac{\pi}{2}+k\pi[/MATH], with [MATH]k\in\mathbb{Z}[/MATH].
Since [MATH]\log_5 25=2=\log_3 9[/MATH], the inequality is equivalent to
[MATH]\log_3(\tan^2 x-1) \geq \log_3 9 \iff \tan^2 x -1 \geq 9 \iff \tan^2 x \geq 10 \iff \tan x \geq \sqrt 10 \lor \tan x \leq -\sqrt{10}[/MATH]
Let [MATH]\alpha= \arctan \sqrt{10}[/MATH], it is [MATH]\tan x \geq \sqrt 10 \lor \tan x \leq -\sqrt{10} \iff x \geq \alpha +k\pi \lor x \leq -\alpha +k\pi[/MATH]; so, combining this with the condition on the logarithm existence in reals, the solution set I get is
[MATH]-\frac{\pi}{2}+k\pi < x \leq -\alpha+k\pi \lor \alpha+k\pi \leq x < \frac{\pi}{2}+k\pi[/MATH]
However, my textbook has this solution: [MATH]\alpha+k\pi \leq x \leq \pi-\alpha+k\pi[/MATH] with [MATH]\alpha=\arctan \sqrt{10}, \frac{\pi}{3} <\alpha<\frac{\pi}{2}, x \ne \frac{\pi}{2}+k\pi[/MATH]I'm not sure if they are equivalent, or if I'm doing something wrong or if the solution is not correct; I've tried substituting [MATH]\arctan \sqrt{11}[/MATH] (since it is [MATH]\arctan \sqrt{10} < \arctan \sqrt{11}< \frac{\pi}{2}[/MATH]) and the inequality is satisfied, can someone help me understand if I'm doing something wrong or my work is correct? Thanks.
My work: it must be [MATH]\tan^2 x-1>0 \iff -\frac{\pi}{2}+k\pi < x < -\frac{\pi}{4}+k\pi \lor \frac{\pi}{4}+k\pi < x < \frac{\pi}{2}+k\pi[/MATH], with [MATH]k\in\mathbb{Z}[/MATH].
Since [MATH]\log_5 25=2=\log_3 9[/MATH], the inequality is equivalent to
[MATH]\log_3(\tan^2 x-1) \geq \log_3 9 \iff \tan^2 x -1 \geq 9 \iff \tan^2 x \geq 10 \iff \tan x \geq \sqrt 10 \lor \tan x \leq -\sqrt{10}[/MATH]
Let [MATH]\alpha= \arctan \sqrt{10}[/MATH], it is [MATH]\tan x \geq \sqrt 10 \lor \tan x \leq -\sqrt{10} \iff x \geq \alpha +k\pi \lor x \leq -\alpha +k\pi[/MATH]; so, combining this with the condition on the logarithm existence in reals, the solution set I get is
[MATH]-\frac{\pi}{2}+k\pi < x \leq -\alpha+k\pi \lor \alpha+k\pi \leq x < \frac{\pi}{2}+k\pi[/MATH]
However, my textbook has this solution: [MATH]\alpha+k\pi \leq x \leq \pi-\alpha+k\pi[/MATH] with [MATH]\alpha=\arctan \sqrt{10}, \frac{\pi}{3} <\alpha<\frac{\pi}{2}, x \ne \frac{\pi}{2}+k\pi[/MATH]I'm not sure if they are equivalent, or if I'm doing something wrong or if the solution is not correct; I've tried substituting [MATH]\arctan \sqrt{11}[/MATH] (since it is [MATH]\arctan \sqrt{10} < \arctan \sqrt{11}< \frac{\pi}{2}[/MATH]) and the inequality is satisfied, can someone help me understand if I'm doing something wrong or my work is correct? Thanks.