Solve the inequality log_3 (tan² x-1) >= log_5 (25)

Ozma

Junior Member
Joined
Oct 14, 2020
Messages
83
Solve the inequality [MATH]\log_3(\tan^2 x-1) \geq \log_5 25[/MATH].

My work: it must be [MATH]\tan^2 x-1>0 \iff -\frac{\pi}{2}+k\pi < x < -\frac{\pi}{4}+k\pi \lor \frac{\pi}{4}+k\pi < x < \frac{\pi}{2}+k\pi[/MATH], with [MATH]k\in\mathbb{Z}[/MATH].
Since [MATH]\log_5 25=2=\log_3 9[/MATH], the inequality is equivalent to

[MATH]\log_3(\tan^2 x-1) \geq \log_3 9 \iff \tan^2 x -1 \geq 9 \iff \tan^2 x \geq 10 \iff \tan x \geq \sqrt 10 \lor \tan x \leq -\sqrt{10}[/MATH]
Let [MATH]\alpha= \arctan \sqrt{10}[/MATH], it is [MATH]\tan x \geq \sqrt 10 \lor \tan x \leq -\sqrt{10} \iff x \geq \alpha +k\pi \lor x \leq -\alpha +k\pi[/MATH]; so, combining this with the condition on the logarithm existence in reals, the solution set I get is

[MATH]-\frac{\pi}{2}+k\pi < x \leq -\alpha+k\pi \lor \alpha+k\pi \leq x < \frac{\pi}{2}+k\pi[/MATH]
However, my textbook has this solution: [MATH]\alpha+k\pi \leq x \leq \pi-\alpha+k\pi[/MATH] with [MATH]\alpha=\arctan \sqrt{10}, \frac{\pi}{3} <\alpha<\frac{\pi}{2}, x \ne \frac{\pi}{2}+k\pi[/MATH]I'm not sure if they are equivalent, or if I'm doing something wrong or if the solution is not correct; I've tried substituting [MATH]\arctan \sqrt{11}[/MATH] (since it is [MATH]\arctan \sqrt{10} < \arctan \sqrt{11}< \frac{\pi}{2}[/MATH]) and the inequality is satisfied, can someone help me understand if I'm doing something wrong or my work is correct? Thanks.
 
Here is a solution of an equivalent form of this question.
I used the change of base theorem: \(\log_3(f(X))=\dfrac{\log(f(X))}{\log(3)}\).
 
Solve the inequality [MATH]\log_3(\tan^2 x-1) \geq \log_5 25[/MATH].

My work: it must be [MATH]\tan^2 x-1>0 \iff -\frac{\pi}{2}+k\pi < x < -\frac{\pi}{4}+k\pi \lor \frac{\pi}{4}+k\pi < x < \frac{\pi}{2}+k\pi[/MATH], with [MATH]k\in\mathbb{Z}[/MATH].
Since [MATH]\log_5 25=2=\log_3 9[/MATH], the inequality is equivalent to

[MATH]\log_3(\tan^2 x-1) \geq \log_3 9 \iff \tan^2 x -1 \geq 9 \iff \tan^2 x \geq 10 \iff \tan x \geq \sqrt 10 \lor \tan x \leq -\sqrt{10}[/MATH]
Let [MATH]\alpha= \arctan \sqrt{10}[/MATH], it is [MATH]\tan x \geq \sqrt 10 \lor \tan x \leq -\sqrt{10} \iff x \geq \alpha +k\pi \lor x \leq -\alpha +k\pi[/MATH]; so, combining this with the condition on the logarithm existence in reals, the solution set I get is

[MATH]-\frac{\pi}{2}+k\pi < x \leq -\alpha+k\pi \lor \alpha+k\pi \leq x < \frac{\pi}{2}+k\pi[/MATH]
However, my textbook has this solution: [MATH]\alpha+k\pi \leq x \leq \pi-\alpha+k\pi[/MATH] with [MATH]\alpha=\arctan \sqrt{10}, \frac{\pi}{3} <\alpha<\frac{\pi}{2}, x \ne \frac{\pi}{2}+k\pi[/MATH]I'm not sure if they are equivalent, or if I'm doing something wrong or if the solution is not correct; I've tried substituting [MATH]\arctan \sqrt{11}[/MATH] (since it is [MATH]\arctan \sqrt{10} < \arctan \sqrt{11}< \frac{\pi}{2}[/MATH]) and the inequality is satisfied, can someone help me understand if I'm doing something wrong or my work is correct? Thanks.

Have you tried graphing both answers (and also graphing [MATH]y=\log_3(\tan^2 x-1)[/MATH] to compare with both answers)?

Their answer is

[MATH]\alpha+k\pi \leq x \leq \pi-\alpha+k\pi[/MATH] with [MATH]x \ne \frac{\pi}{2}+k\pi[/MATH]​

This can be rewritten as

[MATH]\alpha+k\pi \leq x \lt \frac{\pi}{2}+k\pi \lor \frac{\pi}{2}+k\pi \lt x \leq \pi-\alpha+k\pi[/MATH]​

Your answer is

[MATH]-\frac{\pi}{2}+k\pi < x \leq -\alpha+k\pi \lor \alpha+k\pi \leq x < \frac{\pi}{2}+k\pi[/MATH]​

Do these agree?
 
Your answer is correct.
First consider the solutions in the range [MATH](-\tfrac{\pi}{2}, \tfrac{\pi}{2})[/MATH][MATH]\tan^2 x≥1, \tan^2 x≥\sqrt{10} \rightarrow \tan^2 x≥\sqrt{10}[/MATH]
so [MATH](-\tfrac{\pi}{2},-\alpha] \cup [\alpha, \tfrac{\pi}{2})[/MATH]so the full solution set: (to use your notation)
[MATH](k\pi-\tfrac{\pi}{2},k\pi-\alpha] \cup [k\pi+\alpha, k\pi+\tfrac{\pi}{2})[/MATH]
[MATH]\bigcup \limits_{k\in \mathbb{Z}} (k\pi-\tfrac{\pi}{2},k\pi-\alpha] \cup [k\pi+\alpha, k\pi+\tfrac{\pi}{2})[/MATH]
 
To compare with your book answer, write out the first two pairs of intervals in your answer:
[MATH](-\tfrac{\pi}{2},-\alpha] [\alpha, \tfrac{\pi}{2}) (\pi-\tfrac{\pi}{2},\pi-\alpha] [\pi +\alpha, \pi +\tfrac{\pi}{2})[/MATH]combining the middle two, you get [MATH][\alpha,\pi-\alpha][/MATH] excluding [MATH]\tfrac{\pi}{2}[/MATH]so the full solution may be written:
[MATH][k\pi+\alpha,k\pi+\pi-\alpha][/MATH] excluding [MATH]k\pi+\tfrac{\pi}{2}[/MATH][MATH]\bigcup \limits_{k\in \mathbb{Z}} [k\pi+\alpha,k\pi+\pi-\alpha] \setminus \{k\pi+\tfrac{\pi}{2}, k\in \mathbb{Z}\} [/MATH]
 
Top