Hello, Mark!
I need to graph and solve a quadratic equation using a table of values.
Example: \(\displaystyle \;x^2\,+\,x\,-\,6\:=\:0\)
This is the most
primitive method for solving an equation . . .
Plug in a variety of values for \(\displaystyle x\) and find the values of the function.
. . Let \(\displaystyle x\) run from -4 to +4.
\(\displaystyle x=\)-\(\displaystyle 4:\;(\)-\(\displaystyle 4)^2\,+\,(\)-\(\displaystyle 4)\,-\,6\;=\;6\)
\(\displaystyle x=\)-\(\displaystyle 3:\;(\)-\(\displaystyle 3)^2\,+\,(\)-\(\displaystyle 3)\,-\,6\;=\;0\)
\(\displaystyle x=\)-\(\displaystyle 2:\;(\)-\(\displaystyle 2)^2\,+\,(\)-\(\displaystyle 2)\,-\,6\;=\;\)-\(\displaystyle 4\)
\(\displaystyle x=\)-\(\displaystyle 1:\;(\)-\(\displaystyle 1)^2\,+\,(\)-\(\displaystyle 1)\,-\,6\;=\;\)-\(\displaystyle 6\)
\(\displaystyle x=\,0:\;0^2\,+\,0\,-\,6\;=\;\)-\(\displaystyle 6\)
\(\displaystyle x=\,1:\;1^2\,+\,1\,-\,6\;=\;\)-\(\displaystyle 4\)
\(\displaystyle x=\,2:\;2^2\,+\,2\,-\,6\;=\;0\)
\(\displaystyle x=\,3:\;3^2\,+\,3\,-\,6\;=\;6\)
\(\displaystyle x=\,4:\;4^2\,+\,4\,-\,6\;=\;14\)
This gives us a set of points: \(\displaystyle (\)-\(\displaystyle 4,6),\,(\)-\(\displaystyle 3,0),\,(\)-\(\displaystyle 2,\)-\(\displaystyle 4),\,(\)-\(\displaystyle 1,\)-\(\displaystyle 6),\,(0,\)-\(\displaystyle 6),\,(1,\)-\(\displaystyle 4),\,(2,0),\,(3,6),\,(4,14)\)
Plot the points.
Code:
|
* | *
|
|
|
- - o - - - - - | - - - - o - -
(-3,0) | (2,0)
|
* | *
* *
|
The points where the graph crosses the x-axis are the solutions.
Therefore, the solutions are: \(\displaystyle \:x\,=\,-3\) and \(\displaystyle x\,=\,2\)