Okay, now that the partial sum has been given to you, let's see how it can be developed. I would write:
[MATH]S_n=\sum_{k=2}^{n}\left(\frac{k^2-k-1}{(k+1)!}\right)[/MATH]
Using the hint I provided in post #2, we may write:
[MATH]S_n=\sum_{k=2}^{n}\left(\frac{k-1}{k!}-\frac{k}{(k+1)!}\right)[/MATH]
And thus:
[MATH]S_n=\sum_{k=2}^{n}\left(\frac{k-1}{k!}\right)-\sum_{k=2}^{n}\left(\frac{k}{(k+1)!}\right)[/MATH]
Let's re-index the first sum on the right:
[MATH]S_n=\sum_{k=1}^{n-1}\left(\frac{k}{(k+1)!}\right)-\sum_{k=2}^{n}\left(\frac{k}{(k+1)!}\right)[/MATH]
Now, let's pull off the first term of the first sum and the last term of the second sum:
[MATH]S_n=\frac{1}{2}+\sum_{k=2}^{n-1}\left(\frac{k}{(k+1)!}\right)-\sum_{k=2}^{n-1}\left(\frac{k}{(k+1)!}\right)-\frac{n}{(n+1)!}[/MATH]
And since the two sums now add to zero, we're left with:
[MATH]S_n=\frac{1}{2}-\frac{n}{(n+1)!}[/MATH]
Now, can you compute:
[MATH]S_{\infty}=\lim_{n\to\infty}\left(S_n\right)=?[/MATH]