Having some serious trouble with: 4/(3x)+3/(2y)=5/12 and 3/(2x)-2/(3y)=4 What's my first step?
C catalyst0435 New member Joined Mar 12, 2007 Messages 1 Mar 12, 2007 #1 Having some serious trouble with: 4/(3x)+3/(2y)=5/12 and 3/(2x)-2/(3y)=4 What's my first step?
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Mar 12, 2007 #2 Re: System of Equations Hello, catalyst0435! Solve: \(\displaystyle \L\:\begin{array}{cc}[1] \\ \\ \\ \\ \\ \\ \\[2]\end{array}\;\begin{array}{ccc}\frac{4}{3x}\,+\,\frac{3}{2y}\:=\:\frac{5}{12} \\ \\ \\ \frac{3}{2x}\,-\,\frac{2}{3y}\:=\:4\end{array}\) Click to expand... Multiply [1] by \(\displaystyle \frac{2}{3}:\L\;\;\frac{8}{9x}\,+\,\frac{1}{y}\:=\:\frac{5}{18}\) Multiply [2] by \(\displaystyle \frac{3}{2}:\L\;\;\frac{9}{4x}\,-\,\frac{1}{y}\:=\:6\) Add: \(\displaystyle \L\:\frac{8}{9x}\,+\,\frac{9}{4x}\:=\:\frac{5}{18}\,+\,6\;\;\Rightarrow\;\;\frac{113}{36x}\:=\:\frac{113}{18}\) Hence: \(\displaystyle \L\:36x\:=\:18\;\;\Rightarrow\;\;\fbox{x\,=\,\frac{1}{2}}\) Substitute into [2]: \(\displaystyle \L\:\frac{3}{2(\frac{1}{2})}\,-\,\frac{2}{3y}\:=\:4\;\;\Rightarrow\;\;3\,-\,\frac{2}{3y}\:=\:4\) Therefore: \(\displaystyle \L\,-\frac{2}{3y}\:=\:1\;\;\Rightarrow\;\;\fbox{y\:=\:-\frac{2}{3}}\)
Re: System of Equations Hello, catalyst0435! Solve: \(\displaystyle \L\:\begin{array}{cc}[1] \\ \\ \\ \\ \\ \\ \\[2]\end{array}\;\begin{array}{ccc}\frac{4}{3x}\,+\,\frac{3}{2y}\:=\:\frac{5}{12} \\ \\ \\ \frac{3}{2x}\,-\,\frac{2}{3y}\:=\:4\end{array}\) Click to expand... Multiply [1] by \(\displaystyle \frac{2}{3}:\L\;\;\frac{8}{9x}\,+\,\frac{1}{y}\:=\:\frac{5}{18}\) Multiply [2] by \(\displaystyle \frac{3}{2}:\L\;\;\frac{9}{4x}\,-\,\frac{1}{y}\:=\:6\) Add: \(\displaystyle \L\:\frac{8}{9x}\,+\,\frac{9}{4x}\:=\:\frac{5}{18}\,+\,6\;\;\Rightarrow\;\;\frac{113}{36x}\:=\:\frac{113}{18}\) Hence: \(\displaystyle \L\:36x\:=\:18\;\;\Rightarrow\;\;\fbox{x\,=\,\frac{1}{2}}\) Substitute into [2]: \(\displaystyle \L\:\frac{3}{2(\frac{1}{2})}\,-\,\frac{2}{3y}\:=\:4\;\;\Rightarrow\;\;3\,-\,\frac{2}{3y}\:=\:4\) Therefore: \(\displaystyle \L\,-\frac{2}{3y}\:=\:1\;\;\Rightarrow\;\;\fbox{y\:=\:-\frac{2}{3}}\)