Trigonometric identities: 4cot²(x) - 6 cosec (x) = -6

Simongreen93

New member
Joined
May 4, 2016
Messages
3
Trigonometric identities: 4cot²(x) - 6 cosec (x) = -6

Can anyone please help me with this question

Solve the following between the angles of 0 and 360 deg
4cot² - 6 cosec x = -6
 
Last edited by a moderator:
Can anyone please help me with this question

Solve the following between the angles of 0 and 360 deg
4cot² - 6 cosec x = -6
Hint: cosec2(x) = 1 + cot2(x)

What are your thoughts?

Please share your work with us ...even if you know it is wrong.

If you are stuck at the beginning tell us and we'll start with the definitions.

You need to read the rules of this forum. Please read the post titled "Read before Posting" at the following URL:

http://www.freemathhelp.com/forum/announcement.php?f=33
 
Can anyone please help me with this question

Solve the following between the angles of 0 and 360 deg
4cot² - 6 cosec x = -6
Before anyone can help you you need to state the problem correctly. You wrote 4cot2---this has no meaning at all. You compute cot of angles (and possible even square them). You need to state the angle!!!! Is it 4cot2(17x) or is it 4cot2(3x-1) or is it something else? Give us a chance to help you by stating the complete problems. Thank you.
 
Last edited:
Before anyone can help you you need to state the problem correctly. You wrote 4cot2---this has no meaning at all. You compute cot of angles (and possible even square them). You need to state the angle!!!! Is it 4cot2(17x) or is it 4cot2(3x-1) or is it something else. Give us a chance to help you by stating the complete problems. Thank you.

There is no angle given, it says solve between the angles of 0 and 360 deg.
This is how the question is worded that I have been given, I assume that the identity must be changed, but does it then become a quadratic equation?



[FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]cot[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]≡[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Size1][[/FONT]

[FONT=MathJax_Main]4[/FONT][FONT=MathJax_Size1][[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Size1]][/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]6[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]6[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]6[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]3[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]6[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]6[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]0[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]0[/FONT]4csc2x16cscx64csc2x46cscx64csc2x6cscx202csc2x3cscx10[FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Size1]][/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]6[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]6[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]6[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]3[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT]

[FONT=MathJax_Main]4[/FONT][FONT=MathJax_Size1][[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Size1]][/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]6[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]6[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]6[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]3[/FONT][FONT=MathJax_Main]csc[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]6[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]6[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]0[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]0[/FONT]4csc2x16cscx64csc2x46cscx64csc2x6cscx202csc2x3cscx10
 
There is no angle given, it says solve between the angles of 0 and 360 deg.
This is how the question is worded that I have been given, I assume that the identity must be changed, but does it then become a quadratic equation?
The angle that I say is missing does not have to be an exact value, it could be x2, 13x, x/2, ... But an angle has to be there!

Foe example, Cos has no meaning at all, while cos(30\(\displaystyle \circ\)) and cos(2x) both have meaning.
 
Top