Trigonometry Identity Prob: Verify (tan^2x+1)(cos^2(-x)-1)=-tan^2x

Prove (tan^2x+1)(cos^2(-x)-1)=-tan^2x

Prove the identity
(tan^2x+1)(cos^2(-x)-1) = -tan^2x


See if you can fill in the boxes to answer this question.

We know 1 + tan^2(x) = ◻️^2(x) and cos(-x) = cos◻️
LHS = ◻️^2(x)[◻️^2(x) - 1]
= ◻️ - sec^2(x) since secx = 1/◻️x
= ◻️ - [1 + ◻️^2(x)]
= - ◻️^2(x)
= RHS
 
Top