Re: two numbers that multiply to equal 10, add to equal 77/1
Hello, bittersweet!
First of all, you set it up "the hard way".
Second, you
can get rid of fractions in an equation.
I need help solving for x for this question:
. . .\(\displaystyle \left(x\,-\,\frac{1}{x}\right)^2\,-\,\frac{77}{12}\left(x\,-\,\frac{1}{x}\right)\,+\,10\:=\:0\)
We want two numbers with a product of \(\displaystyle 10\) and a sum of \(\displaystyle \frac{77}{12}\)
We have: \(\displaystyle \,\begin{Bmatrix}xy\:=\:10 \\ x\,+\,y\:=\:\frac{77}{12}\end{Bmatrix}\)
The second equation gives us: \(\displaystyle \,y\:=\:\frac{77}{12}\,-\,x\;\)
[a]
Substitute into the first equation: \(\displaystyle \,x\left(\frac{77}{12}\,-\,x\right) \;= \;10\;\;\Rightarrow\;\;\frac{77}{12}x\,-\,x^2\;=\;10\)
Multiply by 12: \(\displaystyle \,77x\,-\,12x^2\;=\;120\) . . .
(Try to remember that!)
We have a quadratic: \(\displaystyle \,12x^2\,-\,77x\,+\,120\;=\;0\)
\(\displaystyle \;\;\)which factors: \(\displaystyle \,(4x\,-\,15)(3x\,-\,8)\;=\;0\;\)
**
\(\displaystyle \;\;\)and has roots: \(\displaystyle \,x\:=\:\frac{15}{4},\;\frac{8}{3}\)
Substitute these into
[a] and we get: \(\displaystyle \,y\:=\:\frac{8}{3},\;\frac{15}{4}\)
Therefore, the two numbers are: \(\displaystyle \L\,\frac{15}{4}\) and \(\displaystyle \L\frac{8}{3}\)
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Check
Product: \(\displaystyle \L\,\frac{15}{4}\,\times\,\frac{8}{3} \;= \;\frac{\not{15}^5}{\not{4}}\,\times\,\frac{\not{8}^2}{\not{3}} \;= \; 10\) . . .
check!
Sum: \(\displaystyle \L\,\frac{15}{4}\,+\,\frac{8}{3}\;=\;\frac{45}{12}\,+\,\frac{32}{12}\;=\;\frac{77}{12}\) . . .
check!
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
**
Unless you are experienced at Factoring,
\(\displaystyle \;\;\)the Quadratic Formula is easier.
We have: \(\displaystyle \L\,12x^2\,-\,77x\,+\,120\;=\;0\)
Then: \(\displaystyle \L\,x\;=\;\frac{-(-77)\,\pm\,\sqrt{(-77)^2\,-\,4(12)(120)}}{2(12} \;= \;\frac{77\,\pm\,\sqrt{169}}{24}\)
and we have: \(\displaystyle \L\,x\;=\;\begin{Bmatrix}\frac{77\,+\,13}{24}\:=\:\frac{90}{24}\:=\:\frac{15}{4} \\.\\ \frac{77\,-\,13}{24}\:=\:\frac{64}{24}\:=\:\frac{8}{3}\end{Bmatrix}\)